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Abstract

Manufacturers are constantly developing increasingly miniature, ferroelectric multi-

layer ceramic capacitors, survivable under progressively harsher mechanical stresses.

However, the piezoelectric response of the bulk Barium Titanate-based dielectric in

such capacitors has not yet been addressed for shocks above 3,000 g. Thus, the

current research developed a finite element capacitor model and modified an established

constitutive relationship to calculate the capacitive response under high-g drop impact.

Scanning electron microscope and impedance analyzer data confirmed the flexural mode

of mechanical failure, while the newly applied Resistor Capacitor (RC) capacitance

measurement technique detected discreet partial and complete electrode separation from

the terminal, corresponding to the board oscillation frequency. The experiments detected

an up to 10% increase in capacitance during 24,000 g shocks, while the numerical model

predicted the electromechanical response to within 2% of the nominal capacitance value,

closely matching in waveform to the experimental data. When the flexural failures were

completely prevented and the capacitance response was reduced by 81% with completely

restricted board flexure, the electromechanical response was still detectable during drop

impacts generating 3,000 g peak accelerations. While preventing board oscillations may

reduce mechanical failure probability, unaddressed piezoelectric response of ferroelectric

capacitors may still cause significant intermittent reliability issues above commercially

relevant conditions.
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PIEZOELECTRIC RESPONSE OF FERROELECTRIC CERAMICS

UNDER MECHANICAL STRESS

I. Introduction

Aerospace technology designers and manufacturers have always had to maintain a

perfect balance between safety, performance and efficiency. Money and effort that

went into expensive testing of a limited number of articles and components dedicated to

investigating their performance had to be weighed against the company profit margins and

component reliability. Thus, commercial and military aircraft, and their associated aircraft

support systems manufacturing industry had to focus on understanding the reliability of

their products only in operationally representative environments. In particular, electronic

packages integrated inside aerospace equipment were tested under only the expected

vibration profiles, mechanical loadings and thermal operating conditions. Consequently,

reliability testing of electronic packages was concentrated over a very specific range of

operating conditions and the failure modes of the aerospace electronics were investigated

only in these environments.

Due to the prohibitive cost of developing new technology intended for an extremely

narrow range of applications, a significant amount of military hardware is derived from

Commercial Off-The-Shelf (COTS) electronics. Unfortunately, while a vast majority of

electronics used in military applications share similar operating conditions throughout

their exploitation as electronic packages developed from the same COTS products and

used for similar purposes in the civilian arena, some military technology is subjected

to much harsher mechanical loadings. Therefore, this study will focus on developing

relationships between mechanical stress and failure mechanisms of surface mounted

1



electronics, which can predict electronics material and component performance, and

reliability under mechanical stresses representative of military applications.

Printed Circuit Boards (PCB) used in munitions for fuzing or detonation initiation are

subjected to a much wider range of temperatures before employment, and are expected to

reliably perform under much higher shock impact loadings than even those specified in

the Joint Electron Device Engineering Council (JEDEC) standards, which are used by the

industry and academia to test the reliability of electronics. For example, circuitry inside

munitions must be able to withstand hours of cold soaking at temperatures on the order of

-50◦ C, and then within minutes, or even seconds, be able to perform under mechanical

shocks and approximately 20,000 g acceleration profiles, which are an order of magnitude

greater than those specified by the JEDEC standards [1–3]. Even though electronic

components might have been developed and tested with a certain amount of an engineering

safety factor, extrapolating equipment performance past the range of conditions under

which the expensive testing has been performed in order to reduce cost of development

is an extremely dangerous practice. Furthermore, failure mechanisms of electronics are

still poorly understood, and must be sufficiently investigated before attempting to predict

electrical component behavior under harsh environmental conditions. Thus, if the extreme

mechanical stresses indicative of the environment in military applications can be correlated

to certain failure mechanisms of electronics materials, it might be possible to establish

elementary component design rules in order to increase reliability of aerospace systems.

While discussing reliability of any electronic package, which is sometimes anecdotally

called a study of poor contacts, two overarching modes of failure must be addressed,

mechanical and electromechanical. Mechanical breakdown of electrical circuits is

essentially a study of material properties of components manufactured under varying

conditions when subjected to a wide range of mechanical loadings, impact shocks

or thermal stresses on different temporal scales. In order to better understand the
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behavior of each class of materials such as polymers, solder alloys, ceramics and metals

that make up the electrical circuitry, different constitutive relationship models such as

the Zerilli-Armstrong, Mulliken-Boyce, Johnson-Cook, Anand, Steinberg-Guinan-Lund,

MieGruneisen and more have been developed based on empirical observations [4–8].

Often, mechanical breakdown occurs near the material interface, and this phenomenon

has recently also attracted much attention from both experimental and computational

communities. Relatively new computational methods, such as Cohesive Zone Model

(CZM) and Extended Finite Element Method (XFEM) have been further developed by

academia, and implemented in many commercial Finite Element Analysis (FEA) codes

in order to better predict mechanical breakdown of materials at their interface [9, 10].

Furthermore, in order to simulate mechanical shock effects, explore the dynamic response,

and predict mechanical breakdown of electronic materials, numerous testing techniques

such as very high-g machines, drop towers, Hopkinson bar, sled tests and cannons have

been employed by industry.

While mechanical breakdown of PCB materials is being intensively studied by academia,

manufacturing industry and even many government research agencies using broad com-

putational methods, theoretical analysis and exploring vast number of constitutive model

behaviors, relatively little attention has been given to investigate electromechanical behav-

ior of circuitry subjected to harsh mechanical conditions. Electrical breakdown behavior

of electronic components such as resistors, transducers and capacitors has been intensely

investigated using empirical methods with concentration on the performance of raw ma-

terials. However, little attention has been given to the electromechanical performance of

electronics under extreme conditions, which can explain some of the transient responses

of electric components. In particular, capacitors, whether traditionally mounted or printed

into the composite circuit board material, that undergo harsh mechanical stresses indicative

of military applications have been slow to catch up with the rest of the technology, which
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predominantly focuses on mechanical survivability of components. By developing com-

putational models describing the piezoelectric behavior of the dielectric materials inside

capacitors, transient electromechanical failure mechanisms of electronics, which are often

disregarded as noise in the system, may be quantitatively predicted and reduced.

However, predicting electromechanical response of components subjected to harsh

mechanical loadings on the order of 20,000 g is not trivial. Part of the problem in

researching the behavior of the dielectric materials that are integrated inside the capacitors

is due to the broad theory that requires intimate knowledge of both continuum mechanics,

where a material’s mechanical response is obtained using conservation of mass and

momentum equations, and the classical electromagnetic (or at least electrostatic) theory

coupled with thermodynamics. On the microscopic level, the overarching material models

that require one to think of the ceramic dielectric materials inside capacitors in terms

of their crystalline structure does not easily lend to picturing its relationships within

the quantum mechanics physics framework or even atomic structure models. Also,

from the manufacturing standpoint, dielectric crystalline materials, whether they possess

piezoelectric, pyroelectric or ferroelectric properties have an inherent amount of variability

that significantly affects their electromechanical response. For example, the same type

of material, such as the Lead Zirconate Titanate (PZT)95/5 will have varying orthotropic

elastic, piezoelectric and permittivity moduli as well as unique micro-structural defects

due to slight differences in crystal growth and manufacturing techniques, which drastically

change the electromechanical response of the material [11]. Making matters even more

complicated are the difficulties in testing the electromechanical properties of the dielectric

materials and inherent hazards associated with working with them based on the potentially

large voltages that capacitors using such materials can generate.

Despite the difficulties of working with piezoelectric and ferroelectric materials, most

of the research has been concentrated on experimentally observing the quality of voltage
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and current output of the dielectric materials as they are subjected to various mechanical

loads. Numerous tests have been performed to investigate the electromechanical response

of the dielectric ceramic inside a Ferroelectric Generator (FEG) by sending a plane shock

wave generated with explosives through the material [12–16]. Also, static and dynamic

compressive experiments with the piezoelectric materials have been performed using three-

point loading conditions and load drop tests to investigate dielectric properties such as

electrical energy output [17, 18]. Finally, and only recently, more attention has been given

to the effects of dielectric micro-structure, in particular characterization of polycrystalline

domains using various scanning techniques and domain walls motion on the overall

electromechanical properties of the ferroelectric materials [19].

While many experiments have been conducted to observe the behavior of dielectric

materials, relatively little progress has been made in developing computational models

and relationships between mechanical stress and the associated electrical outputs of

different types of polarizable materials as used directly in electrical components such

as capacitors. Most, if not all existing electromechanical response theory of dielectric

materials has been based on the well established principles, starting with the conservation

of mass and momentum, and ending with Gauss’ law and Faraday’s law [20]. Even

though these principles provide a solid framework for developing computational models

of electromechanical response of dielectrics, more information about the specific material

properties such as polarizability, permittivity and elasticity, as well as the internal

component structure is required to provide numerical solutions. Because these properties of

dielectrics can vary wildly between different manufactured parcels of a particular material,

and are often difficult to precisely measure, relationships for capacitance response under

mechanical stress must be established in order to predict performance of capacitors that

often employ ferroelectric materials as their insulators due to their high dielectric constant.
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As previously discussed, multiple constitutive relationships of mechanical response

of different classes of materials, such as polymers, ceramics and metals have been

thoroughly developed based on phenomenological and empirical observations. Even

relatively new material interface and crack propagation computational methods have been

developed for various government and commercially available FEA codes. However,

from a practical standpoint, especially in military applications, the reason for electrical

component failure is irrelevant, as long the breakdown is significant enough to cause the

product to malfunction. Therefore, this study is focused on modeling piezoelectric behavior

of ferroelectric materials inside capacitors, which are critical to circuitry reliability of

munitions that are exposed to extreme mechanical stress environments representative

of military applications, by experimentally varying the mechanical stress magnitude

and orientation of the mechanical shock and using computational models based on the

well established classical theories mentioned above to predict stress induced capacitance

behavior. Both mechanical breakdown of capacitors exposed to varying mechanical

loads and transient electromechanical response of capacitors under shock are addressed

to completely describe failure mechanisms of surface mounted components.

In order to accurately model and predict electromechanical response of piezoelectric

and ferroelectric dielectric materials inside capacitors, a Quasi-Static Electric (QSE)

field approximation is employed using the ALEGRA-EMMA code developed by Sandia

National Laboratories (SNL) [21, 22]. However, before computationally predicting the

electromechanical capacitance response, an accurate dynamic response model of the circuit

board must be constructed. First, the mechanical stresses and an accurate dynamic

response of a printed circuit board model is validated with the experimental results

obtained using drop tower tests. Next, high-voltage and low-voltage Multilayer Ceramic

Capacitors (MLCC), which use ferroelectric material for their dielectric are subjected to

drop impacts with acceleration levels ranging between 500 - 24,000 g, and their capacitance
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is measured using the RC time constant calculation method during the mechanical shock

event. Finally, validated by the experiments, a FEA model of a series capacitor is created

to simulate transient piezoelectric response of the ferroelectric dielectric inside a capacitor

to predict capacitance variations during shock in order to help establish a set of design

and exploitation criteria that better predict reliability and survivability of capacitors used in

electronics exposed to high-g drop impacts. In summary, this work:

1. Establishes a computational dynamic response model for the printed circuit board

undergoing impact shock tests in drop tower experiments.

2. Experimentally measures the capacitive response of capacitors exposed to high-g

mechanical stress.

3. Based on the previously established dynamic model and experimentally gathered

capacitance data, develops a computational model that predicts the electromechanical

response of dielectric materials, and thus capacitance of MLCC, in order to fully

describe failure mechanisms of components subjected to drop impacts.

Accomplishing the above three research objectives will, for the first time in literature,

create an accurate computational model for board strain predictions validated with

experimental data under high-g shock impact conditions an order of magnitude greater

than standards specified by the JEDEC. Additionally, the uniquely applied RC monitoring

technique will be tested under dynamic loading conditions and will provide experimental

data for capacitance variations of components undergoing drop impacts. Finally,

piezoeelctrically induced capacitive changes of ferroelectric ceramics inside the MLCC

will be quantified for the first time in literature using a modified constitutive relationship for

calculating capacitance of devices, and an experimentally validated computational model

of the components predicting their electromechanical response to mechanical stress.
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II. Literature Review

In this chapter the structure of capacitors and properties of their dielectric materials are

discussed and the applicable portions of electromagnetic theory are reviewed. Next

the body of knowledge that pertains to the science of piezoelectric dielectrics, as well

as the failure mechanisms of capacitors, that was found in the literature, is assembled

and analyzed, and the weak areas of information are identified. Finally, theoretical

and mathematical background behind the Piezoelectric model of the finite element code

ALEGRA-EMMA, that will be used to study the electromechanical response of dielectrics,

is described.

2.1 Capacitors

In its simplest definition, a capacitor is an electronic device in an electrical circuit that

stores energy. The property that differentiates capacitors from batteries is that the energy

stored inside the capacitor can be accessed much more quickly than the energy stored in

a battery, despite the fact that both capacitors and batteries contain insulating materials

preventing the flow of electricity through them. Also, a battery provides a constant source

of voltage over a relatively significant period of time while capacitors discharge almost

instantaneously, over a short period defined by the RC time constant. While, the flow of

Direct Current (DC) through the capacitor is blocked, Alternating Current (AC) can easily

pass through the dielectric material of the capacitor. Thus, a capacitor in an electrical DC

circuit can be thought of as a membrane inside a pipe of flowing water.

The water flowing in only one direction can not pass through the membrane, but the

kinetic energy of the flowing water is stored as a potential energy in the membrane as it

stretches due to its elastic nature. The higher the elasticity of the membrane, the greater

amount of water that can be permitted to flow before the flow is stopped, the greater is the

8



potential energy that can be stored by the membrane. Just like in the above analogy, the

greater the amount of electrical charge the capacitor can store, the greater its capacitance,

C, as measured in Farads (F), where one Farad is the ratio between one Coulomb and one

Volt (1F = C/V). However, each membrane has a limit in the total amount of water that

it can hold back, just like every capacitor has a breakdown voltage, or potential, beyond

which the electrical breakdown of the insulating material begins.

Capacitors come in many shapes and sizes, and commercial models are often used

in many applications, ranging from pulsed power devices [12], to signals processing and

conditioning of electronics, to storing energy for starting machinery. The high energy

release rate properties make capacitors very desirable to military applications. One of

the applications of interest in this study is the use of capacitors, which store a significant

amount of charge in order to provide a large amount of potential, (or voltage) on the

order of more than 1 kV (kiloVolt), at a specified time to initiate a detonation of an

explosive material. However, relatively low voltage capacitors, of approximately 10 VDC,

are also used to run circuitry logic of electronic fuzes inside air munitions and must also

survive under harsh mechanical loads. Therefore, while stability of high-voltage devices is

important in terms of providing a constant amount of energy throughout the shock duration,

the abundance of use of low-voltage capacitors in military, as well as civilian applications

exposed to harsh conditions, is the main focus of this research.

2.1.1 Capacitor Structure and Performance Factors.

Capacitors can comprise several different structures, but they always consist of two

or more conducting material electrodes separated by either vacuum or some type of

electrically insulating material, called dielectric. In many instances, cylindrical capacitors,

such as the ones employed in the coaxial cable are used by commercial industry to transmit

signals, while capacitors requiring large single-use power sources often have multiple

electrodes layered inside a dielectric, and are thus, labeled MLCC.
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However, the simplest model of a capacitor, such as a two-plate capacitor, is a pair

of metallic conducting electrodes with vacuum between them. If the two electrodes of

overlapping area A, separated by distance d, contain an equal, but opposite charge Q, an

electric field E, is produced between the plates. In the limit where d << A, as is the case

for most capacitors, the potential between the two plates is given by Equation (2.1).

V =
Qd
ε0A

(2.1)

where ε0 = 8.85 x 10−12 F/m is the permittivity in a vacuum. Since Q is proportional to V ,

the capacitance of a parallel-plate capacitor can be given by Equation (2.2).

C =
ε0A
d

(2.2)

If dielectric materials are substituted for the vacuum inside the device as the insulating

agent, then the original electric field E0, between the electrodes will be reduced due to

various properties of the dielectric materials, by a factor κ, called the dielectric constant as

seen in Equation (2.3), while at the same time modifying the capacitance C, potential V ,

and exposing the relative permittivity of the dielectric ε.

κ =
ε

ε0
=

C
C0

=
V0

V
(2.3)

Permittivity of a dielectric material can be thought of as a property that describes how

much the material “permits” the external electric field to affect it or how much the material

affects the overall external field passing through it. Such effects as internal polarization of

the material in response to an external electric field is one example of permittivity. The

greater the permittivity, the greater the polarization of the material, the greater the internal

electric field that counteracts the external applied field.

Since capacitance C, is arguably the most important property of a capacitor and

varies greatly with the type of dielectric material that separates the electrodes according to

Equation (2.4), it is of the utmost importance to understand the properties of the dielectric
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materials in order to study the electromechanical behavior of capacitors and ultimately

electromechanical failure mechanisms.

C =
εA
d

(2.4)

Also, due to the fact that the energy U, stored in the parallel-plate capacitor is given by

Equation (2.5),

U =
1
2

QV =
1
2

CV2 (2.5)

and realizing that the quantity Ad is the volume that is occupied by the dielectric insulator,

the energy per unit volume ue, of the dielectric is shown in Equation (2.6).

ue =
1
2
κε0E2 =

1
2
εE2 (2.6)

The simple two-plate capacitors are limited by their design to a certain amount of

charge and potential they can hold. However, capacitance can be increased by adding

electrodes and the number of dielectric layers n, inside the device, which modifies the

capacitance in Equation (2.4) to Equation (2.7), in the case of MLCC.

C =
εA
d

n (2.7)

In Equation (2.7), A is again the overlapping area of plates and d is still the thickness

of the dielectric between two individual electrodes. Two main types of MLCC structures

exist: parallel-plate capacitors and series, or floating electrode capacitors [23]. Parallel-

plate capacitors comprise of electrodes, which all connect to alternating terminals as seen

in Figure 2.1. Electrodes and terminals always consist of electrically conductive materials,

usually copper, nickel or some type of silver alloy [24]. The two terminals, as the word

suggests, are oppositely and either positively or negatively charged when current is applied,

and also sometimes contain mechanically flexible materials that can reduce mechanical

stress during shock [25].
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Figure 2.1: Parallel-Plate Capacitor Electrode Structure

Series electrode capacitors contain the same components as their parallel-plate

counterparts, but also encompass “floating” electrodes which do not physically connect

to terminals as seen in Figure 2.2. The main advantage of series capacitors is in a case of

Figure 2.2: Series/Floating Electrode Capacitor Structure

mechanical failure when the oppositely charged electrodes are exposed during fracture of

the dielectric material. If the dielectric material is cracked in the parallel-plate capacitor,

the capacitor is shorted at potentially inappropriate time, possibly damaging other electrical

components in the circuit. The series capacitor design fails to an open, and thus prevents the

damaging discharge, which is a highly desired, and sometimes a necessary, safety feature

of high-voltage devices rated to 500 VDC and above [25]. The only effect of loss of contact

of electrodes with the terminal is the reduction in capacitance proportional to the number

of failed connecting electrodes [25]. The disadvantage of series capacitors is that their
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electrode overlapping area is reduced and their operation induces an asymmetric collection

of charge on the floating electrodes, reducing the overall capacitance of the component,

despite the high potentials that are allowed [23]. Hence, small high-voltage capacitors with

high permittivity dielectrics are nearly all series capacitors [24].

Regardless of the type or application of the capacitor, its performance as an electrical

component in a simple RC circuit under DC can also be linked to the function of voltage

across the device over time [26]. By applying a constant voltage V0, to a previously

uncharged component of capacitance C, through a resistor of known and constant resistance

R, the potential V , across the capacitor according to Kirchhoff’s rule is given by V = V0−VR.

The flow of charge Q, over time t, is the definition of current I, in the circuit given by

I = dQ/dt, and thus, from Equation (2.1) the voltage across the capacitor can be written as

Equation (2.8).
Q
C

= V0 − R
dQ
dt

(2.8)

If the capacitor is initially uncharged, solving for the current I = dQ/dt and substituting

V0/R for the initial current I0, the voltage drop across a charging capacitor as a function of

time is given by Equation (2.9).

V(t) = V0(1 − e−t/RC) = V0(1 − e−t/τ) (2.9)

Similarly, if the capacitor was previously charged with potential V0, and allowed to

discharge through a resistor of constant resistance R, the voltage V(t), of the discharging

capacitor is given by Equation (2.10).

V(t) = V0e−t/τ (2.10)

The time constant τ = RC is defined as the time it takes the capacitor to charge to 63%

of its full capacity in the charging case, or for the charge to decrease to 37% of its original

value in the discharging case, and is a function of only capacitance and resistance [26].

Thus, if resistance remains constant, by calculating the time constant, and thus extracting
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capacitance, permittivity of the dielectric material can be easily obtained, assuming the

mechanical structure of the component remains unchanged. The capacitor size and

proportions are often dictated by the geometric limitations based on each application, and

for a specified amount of potential, and in turn electric field between the electrodes, the

amount of energy stored in the capacitor varies only with the properties of the dielectric

material, directly relating to volumetric efficiency of the device. Since both the capacitance

and energy are almost exclusively dependent on the properties of the dielectric material,

such as the relative permittivity and dielectric strength, understanding them is critically

important for predicting electrical and electromechanical behavior of capacitors subjected

to mechanical stress.

2.1.2 Dielectric Materials.

There is an incredibly wide variety of dielectric materials, ranging from different types

of ceramics, to composites such as woods and paper, to polymers and even air. But,

essentially, all dielectrics share one property - they are insulators and do not permit the

flow of electric charge through their medium. The extent of their dielectric strength varies

greatly based on the material’s atomic, molecular and microscopic structures, but given

enough electric potential, charge will still pass through the material.

However, just because the material does not permit the flow of charge, it does not mean

that dielectrics are not affected, or do not affect the electric field between the electrodes in

the capacitor. In fact, regardless of the dielectric constant, all dielectrics are polarized

to some extent by an electric field that is present between the electrodes. Polarization

processes in a dielectric material can take place on an atomic scale, through shifting of the

ionic sublattice crystalline structure, rotation of molecular or domain dipoles or through

diffusion of charge until a potential barrier such as an inclusion or impurity stops the

rearrangement of charge [19].
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If an atom is viewed as having a positively charged nucleus and a negatively charged

spherical shell of electrons, atomic polarization under an applied electric field occurs when

a small displacement of electrons relative to the nucleus is aligned along the imposing

electric field [27]. Atomic polarization occurs to some extent in all dielectric materials that

consist of neutrally charged atoms. On the other hand, ionic polarization under applied

electric field occurs when cation and anion sublattices shift in a crystalline structure,

which is indicative of the ceramic dielectric materials [27]. In some molecules, such as

water, the total negative charge center of the oxygen atom is offset from the total positive

charge of the hydrogen atoms resulting in a slightly dipolar molecular structure. In the

absence of an external electric field, water molecules are randomly arranged and do not

produce a net dipole moment. However, in the presence of an electric field, dipolar water

molecules align in the direction of the external electric field to produce net polarization,

the strength of which is proportional to the strength of the electric field up to a certain

limit [26]. Finally, on the microscopic level, if charge carriers are stopped at either the

grain or phase boundaries, that can be thought of either as physical material porosity or

electrostatic boundaries respectively, the resulting effect is the production of net diffusional

polarization [19].

Regardless of the polarization process, its net result is the build up of bound charge

density σb, on the surface of the dielectric due to the fact that insulating materials cannot

conduct charge. Thus, inside the dielectric material and between the oppositely polarized

dielectric material surfaces, an internal electric field Eb, due to bound charge accumulation,

is created. In the case of a capacitor, electrodes that are adjacent to the dielectric material

surfaces contain free charge density σ f , that is free to move about the conductor and the

free charge on the surface of the electrodes creates an initial external field, E0. In the case

where the dielectric material is thin and the distance between electrodes is small, the net

electric field can be calculated using the difference between the initial applied electric field,
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E0, and the internal electric field, Eb, as seen in Equation (2.11).

E = E0 − Eb =
σ f

ε0
−
σb

ε0
=

E0

κ
(2.11)

Solving for the bound charge density σb, a relationship emerges in Equation (2.12) based

on the free charge density and dielectric constant.

σb =

(
1 −

1
κ

)
σ f (2.12)

The bound charge electric field counteracts the applied electric field. In the vacuum,

without any dielectric material, where κ = 1, the total bound charge density is zero.

However, if the dielectric is replaced with a conductor, the dielectric constant would

approach infinity and, as expected, the bound and free charge densities would be equal.

Under strong enough external electric fields, all insulating materials will undergo

some combination of the above mentioned polarization processes [27]. However, the

direct relationship between the applied electric field and the subsequent polarization

classifies materials into separate categories. Dielectrically polarized materials create

a proportional linear relationship between the applied electric field and the resultant

polarization throughout a wide range of electric field strengths. On the other hand,

paraelectric polarization is indicative of materials that have varying permittivity and exhibit

different polarization versus electric field strength slopes. For example, as the external

electric field is applied, polarization is increased proportionally as a linear function with one

slope. However, as the electric field is increased past a certain limit, polarization increases

with a different slope. Paraelectric polarization displays permittivity as a function of the

applied electric field. However, in both dielectric and paraelectric polarization processes,

once the external electric field is removed, polarization disappears and returns to its original

null net polarization value without displaying any hysteresis effects [27].

Ferroelectric materials, which usually are a type of a ceramic, exhibit a hysteresis

relationship between the applied electric field and polarization [11]. Starting with the
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anti-ferroelectric polarization state of the material, where no net polarization is present

without an applied electric field, as the external field is increased, the ferroelectric

material first exhibits paraelectric properties, where permittivity varies as a function of

the electric field strength. Once the electric field reaches a certain polarization saturation

limit and is then brought back down to zero, a certain amount of remnant polarization

remains [11]. Increasing the external electric field in the opposite direction to the so

called coercive level, only switches the polarization of the ferroelectric material, but the

remnant polarization magnitude remains unchanged [11]. The dielectric, paraelectric and

ferroelectric polarization processes can be seen in Figure 2.3, Figure 2.4 and Figure 2.5

respectively. Care must be taken not to confuse the terms dielectric material, which is any

Figure 2.3: Dielectric

Polarization

Figure 2.4: Paraelectric

Polarization

Figure 2.5: Ferroelectric

Polarization

type of insulating material, and dielectric polarization, which is simply a type of linearly

proportional polarization behavior of a material (including dielectric material). Thus, not

all dielectric materials, or insulators, exhibit dielectric polarization behavior.

While classification of dielectric materials based on their response to an external

electric field is important in order to predict the amount of energy that can be stored

in a capacitor, a wide range of crystalline structured materials also exhibit an electrical

response to both mechanical and thermal loads. Crystalline structured materials that exhibit
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responses to mechanical loads, such as compressive or tensile strains, stresses and shocks

are called piezoelectric. Piezoelectric materials occur naturally in the form of quartz

and can also be man-made. Piezoelectric materials are further divided into pyroelectric

materials, which exhibit a change in polarization in response to temperature, and non-

pyroelectric, which do not display electrothermal response. For example, quartz is a non-

pyroelectric crystal, which responds only to mechanical stresses, while crystals such as

tourmaline also produce an electrical response due to the change in temperature. All

pyroelectric materials exhibit some type of piezoelectric properties, due to the inevitable

mechanical stresses imposed on the material with varying temperature gradients, but only

certain piezoelectric crystals exhibit pyroelectric properties.

Pyroelectric materials are then further divided into non-ferroelectric materials, such

as tourmaline, and ferroelectric materials, such as PZT and Barium Titanate (BaTiO3),

which exhibit remnant polarization after applying a static electric field and then removing

it in the process called poling. The behavior of the ferroelectric materials subjected to

mechanical and thermal stresses, as well as to an external electric field, is extremely

complex and relatively poorly understood. Ferroelectric material electromechanical

response is dependent on the exact crystal structure based on the chemical and ionic

composition, which sometimes uses doping agents in order to create more desirable

qualities for specific applications [19]. The behavior is also highly dependent on the

orientation of polarized crystalline structure, both on the molecular/sublattice level and on

the macroscopic/crystalline level where domains and domain walls of regions have closely

aligned polarization directions [11]. The effect of domains and domain walls is evident

in the ferroelectric material’s tendency to exhibit properties that are qualitatively closer

to paraelectric processes in the presence of a static electric field, instead of well-defined

hysteresis loops when considering the permittivity of the dielectric as shown in Figure 2.6

and Figure 2.7. While the coercive field required for phase transition of the ferroelectric
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material is increased in magnitude between single crystal structure and the multi-domain

polycrystalline structure, the net remnant polarization after the phase transition or poling is

reduced [11].

Figure 2.6: Single Crystal Hysteresis Figure 2.7: Multiple Domain Hysteresis

On top of complex ferroelectric hysteresis behavior based on the polycrystalline and

sublattice structures, as well as chemical make up of the crystals, ferroelectric behavior

is also limited to a certain range of temperatures. All ferroelectric materials have a Curie

temperature limit Tc, above which the spontaneous polarization of the crystals is reduced to

zero and again, the hysteresis behavior is reduced to paraelectric properties [27]. However,

once the temperature is brought back to below the Curie temperature, as long as the

ferroelectric material was previously poled, both hysteresis and net polarization properties

return.

Since ferroelectric materials are also piezoelectric in nature, applying static mechan-

ical stresses will invoke an electromechanical response through temporary changes in po-

larization, but will not affect the net remnant polarization once the mechanical load is re-

moved. Also, switching of the electric field will cause a phase transition in ferroelectric
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materials to occur, and while the direction of polarization will change, the magnitude of

the remnant polarization will still be unaffected. Finally, increasing the temperature of the

material past the Curie point and reducing it below the limit again will also leave the same

remnant polarization as long as the static electric field is removed. However, in order to

extract electrical energy stored in the polarized ferroelectric material through the poling

process, the material must be brought to its original anti-ferroelectric state, where in the

absence of an external electric field, net polarization on the macroscopic, domain level, is

returned to its pre-poled value of zero [12].

The energy involved in the transition of the material from the ferroelectric to anti-

ferroelectric state, is the basis of pulsed power devices like the FEG and high voltage

capacitors used in detonations of munitions. The most common method of depolarizing

the ferroelectric material and extracting the energy stored in the internal electrical field, is

through the use of high mechanical stresses obtained from an explosive shock wave [12].

Thus, as will be evident later in this chapter, a significant amount of empirical studies

and numerous experiments have been performed by academia, the manufacturing industry

and even government agencies to study the electromechanical response of the ferroelectric

materials under extreme mechanical shocks produced by explosive pressure waves. Also,

numerous studies have been performed to characterize the behavior of ferroelectric

ceramics undergoing compressive and tensile static loads, as well as compressive stresses

in transducers generated by dropped objects. Since ferroelectric materials by definition

also exhibit piezoelectric characteristics, a significant amount of experimental work has

been devoted to strictly piezoelectric response to understand the underlying mechanical

stress responses of such ceramics without the added complexities of hysteresis loops of

ferroelectric material behavior.

Unfortunately, high-voltage capacitors, whether they include piezoelectric or ferro-

electric dielectric materials as their insulators, are exposed to mechanical stresses that orig-
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inate from dynamic circuit board, or any other type of platform response to high acceler-

ations during impact. While compressive stresses, and thus generated pressures inside the

material due to drop impact accelerations are usually much lower than pressures generated

by an explosive shock wave, the pressures present in the insulating material from a drop

impact still evoke an electromechanical response that at least temporarily changes the po-

larization and dielectric properties of the capacitors. However, the extent to which changes

in dielectric properties affect capacitor performance in the circuit, and ultimately its capac-

itance, has not been described or explained anywhere in literature with enough detail to

make predictions about component reliability.

On the other hand, while static compressive and tensile tests may create similar

mechanical loads on the material as stresses generated by a drop impact, the dynamic

electromechanical response is neglected. However, even the studies, which through

experiments quantify the electromechanical response of piezoelectric or ferroelectric

materials, apply only to a narrow range of materials that are used in such studies, where as

mentioned earlier, each batch of material that is manufactured even by the same company

may have large variations in electromechanical behavior [24]. Furthermore, mechanisms

that describe the effects of different dielectric material properties on the capacitor behavior

in high-stress environments, while taking into account dynamic responses of such devices,

have been almost entirely neglected.

The poorly developed electromechanical response relationships of capacitors inside

circuitry create a large gap in the overall understanding of how dielectric materials behave

under the studied conditions of compressive and tensile mechanical stresses. However,

extrapolating whatever empirical data that exists to different temporal scales or to different

mechanical stress mechanisms without first attempting to quantify, or at least address the

underlying mechanical and electromechanical behavior of the dielectric is unwise. Thus,

the current work is focused on studying mechanical and electromechanical response of
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MLCC exposed to high-g environments on the order of 20,000 g using both computational

and experimental methods.

First, mechanical stresses generated during high-g drop impact must be obtained

through controlled experiments measuring dynamic response of the PCB and then

accurately modeled with solid dynamics software under the same conditions in order

to accurately replicate acceleration profiles on the surface mounted capacitors. Then,

devices that use ferroelectric materials for dielectric must be methodically exposed to

the previously characterized stresses in the laboratory and their capacitance measured

at high enough data rate in order to ensure rudimentary description of mechanical

and electromechanical failure mechanisms, which relate to component performance and

reliability. Finally, capacitance response to mechanical stress of ferroelectric ceramic

devices must be calculated using computational methods and models available in FEA, that

were developed from the overarching continuum mechanics and electromagnetic theories,

in order to verify experimental capacitance measurements, and predict electromechanical

response of MLCC in high-g drop impact environments. Before further describing the

existing literature on the topic, and providing a detailed mathematical description of how

such software computes the piezoelectric response of dielectric materials, it is important to

provide a rudimentary review of the governing equations.

2.2 Theoretical and Mathematical Backgrounds

When understanding the electromechanical response of dielectric materials, as the

make-up of the word would suggest, one should address at least two different concepts,

electrical response and mechanical response of continuum materials. First, the laws of

the conservation of mass, momentum and energy, as well as some constitutive material

behaviors, such as Hooke’s law and other material responses to mechanical loads, be they

compressive, tensile or shock stresses in nature, are mentioned. Second, the principles

describing how materials respond electrically to a certain electromagnetic stimuli along
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with relationships between electric displacement and polarization are addressed. The

difficulty comes not necessarily in understanding each law or principle individually, but

upon trying to understand their simultaneous and combined effects, and interactions in

the presence of the physical medium. It is important to note, that the current study

will not be concerned with atomic structures of materials or with relativistic concepts of

electromagnetic theory, because the behavior of capacitors in applications of interest may

be adequately explained without the use of such principles.

Due to the electromechanical nature of dielectric materials, it is not possible to

separate mechanical response of the medium from the electromagnetic behavior of

materials under mechanical shock. In fact, as mentioned earlier, in piezoelectric materials

applied stress evokes an electrical response and the material is strained in the presence of

an external electric field. Thus, due to the coupling between the laws of conservation of

mass, momentum and energy in the continuum, and the classical electromagnetic theory, as

it applies to various materials, the equations for electromechanical effect, Equation (2.13)

- Equation (2.19), must be solved simultaneously [20].

ρ̇ + ρ div ẋ = 0 (2.13)

ρġ = div T + ρb (2.14)

ρẋ[ig j] + T[i j] = 0 (2.15)

ρε̇ = divT T ẋ + ρẋ · b + ρh − div(q + E ×H) (2.16)

div D = q (2.17)

curl E = −
∗

B (2.18)

D = ε0E + P (2.19)

The first four equations, Equation (2.13) through Equation (2.16) are based on classical

continuum mechanics and thermodynamic principles, and are written in their strong forms
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of the material derivatives. The Gauss’ law represented by Equation (2.17) is also written

in vector calculus notation using a strong form, while Faraday’s law converted into field

equation using the Stokes’ theorem is presented in Equation (2.18). The last relationship

in Equation (2.19), simply describes theoretical behavior of polarizable materials. Because

this system of governing equations is the foundational framework for numerical solutions

to electromechanical response of piezoelectric materials, it is important to take a closer

look at what each relationship represents, their origins and their possible limitations.

The conservation of mass principle of continuum mechanics is imposed using

Equation (2.13) in the system of governing equations, where ρ is material density, ρ̇ is

the rate of change of density and ẋ is the material trajectory velocity function given by the

partial time derivative ẋ =
∂x(X,t)
∂t , of material point X = (X1, X2, X3). The material is at

an initial state S 0, at t = 0, and after time t, is in the state S t, as shown in Figure 2.8.

Figure 2.8: Continuous Body Trajectory Using Euler’s Notation

In the Euclidean three dimensional space, the deformation tensor, which is used later in

describing the implementation of the piezoelectric model in ALEGRA-EMMA can also be

represented with nine partial derivatives in Equation (2.20), where time t, is fixed and only

the position of the material X, is varied.

Fi j(X, t) =
∂xi(X, t)
∂X j

(2.20)

When working in an inertial frame of reference, laws of mechanics are bound

by the concepts of momentum G, force F, angular momentum LO, and torque MO.
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The integral form of these concepts is given respectively by Equation (2.21) through

Equation (2.24) [20]

G =

∫
ẋ dm (2.21)

F =

∮
t dS +

∫
b dm (2.22)

LO =

∫
(x − xO) × ẋ dm (2.23)

MO =

∮
(x − xO) × t dS +

∫
(x − xO) × b dm (2.24)

where t is the surface force per unit area (traction per unit area), b is body force per

unit mass, and angular momentum and torque are defined with respect to position xO.

For the inertial frame, two Euler’s laws of mechanics emerge, where the time derivative

of momentum is equal to force, Ġ = F, and time derivative of angular momentum is

equal to torque, L̇O = MO. From Cauchy’s theorem, substituting the Euler’s first law into

Equation (2.21) and Equation (2.22), there exist nine functions Ti j, in three dimensions with

the stress tensor given by t = Tn, where n is a vector normal to the surface S . Combining

the two integral laws, Cauchy’s first equation emerges as Equation (2.25).

ρẍ = div T + ρb (2.25)

By denoting g as the momentum per unit mass, the second equation, Equation (2.14),

of the electromechanical response system of governing equations emerges. Following a

similar procedure using the second Euler’s law, leads to the three equations described

by Equation (2.15) in index notation. It is important to note that in the absence of an

electromagnetic field, the generalization for g vanishes and reduces to g = ẋ. Thus, the

Euler’s two laws are derived and applied to the electromechanical behavior of materials

using the concepts of conservation of momentum.

Now it is important to shift attention to principles of thermodynamics, from which the

conservation of energy law, represented by Equation (2.16) is derived. By viewing energy
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as a continuous function of mass, and denoting ε as the energy per unit mass, the total

energy can be written as an integral of ε over the entire body of mass. Similarly, heating

Q, can be given by the sum of the surface integral over the body surface of contact heating

per unit area β, and the integral of the body heating per unit mass h. Both energy E, and

heating Q, can be represented respectively in Equation (2.26) and Equation (2.27) [20].

E =

∫
ε dm =

∫
ρε dV (2.26)

Q =

∮
β dS +

∫
h dm (2.27)

Modifying the force relationship in Equation (2.22), to describe the forces acting on the

body Π, and applying the first law of thermodynamics, which states that energy cannot be

created or destroyed, but can only be transfered from one form into another, an integral

form of the conservation of energy law appears in Equation (2.28).

Ė = Π + Q =
d
dt

∫
ε dm =

∮
ẋ · Tn dS +

∫
ẋ · b dm +

∮
β dS +

∫
h dm (2.28)

Since the contact heating per unit area can also be written in the form β = −q · n = −qn,

where q is the heat flux, Equation (2.28) can be presented by Equation (2.29).

ρε̇ = div T T ẋ + ρẋ · b + ρh − div q (2.29)

However, the above equation does not take into account the energy flux of the

electromagnetic field. With the introduction of concepts of electromotive intensity E =

E + ẋ × B, and magnetomotive intensityH = H − ẋ × D, where E is the electric field, B

is the magnetic field, H is the current potential and D is the charge potential, later defined

as electric displacement for dielectric materials, Equation (2.29) can be rewritten in its

strong form of Equation (2.16). Thus, the conservation of energy relationship in the system

of governing equations describing the electromechanical response originates from the first

law of thermodynamics and is modified using the energy flux vector E ×H , emanating

from the electromagnetic fields.
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The relationship in Equation (2.17), div D = q, where D is electric displacement and

q is the total charge, is derived from observations of experiments, and simply relates to an

integral form of the Gauss’ law as shown in Equation (2.30).∮
S

En dS =
1
ε0

Qnet (2.30)

The above equation is one of Maxwell’s equations for electricity and magnetism and states

that the flux of the electric field En, normal to any closed surface S , is equal to the net

charge Qnet, enclosed by the surface multiplied by 1/ε0. The experimental basis for this law

is Coulomb’s law, which implies that the electric field due to a point charge reduces with

the square of the distance from the center of charge. The relationship in Equation (2.30)

also describes how the electric field lines flow from the positive to the negative charge [26].

Another one of Maxwell’s relationships represented in Equation (2.18), curl E = −
∗

B,

where E, as stated earlier is the electromotive intensity, can be related to Faraday’s law

presented in Equation (2.31). ∮
C

E · dl = −
d
dt

∫
S

Bn dS (2.31)

According to the above equation, the curl of electromotive intensity, which is represented

by the integral of the electric field through any closed curve C, and sometimes also called

electromotive force, is equal to the negative time rate of change in magnetic flux through

the surface S , bounded by the curve. However, the surface does not have to be closed, and

thus magnetic flux is not necessarily equal to zero. Essentially, Equation (2.18) relates the

electric field lines to the change in magnetic flux and describes how electric field relates to

the time rate of change in magnetic field.

Up to this point, Gauss’ law and Faraday’s law have been describing the properties

and interactions between the electric fields and magnetic fields in free space. While

parallel plate capacitors with a vacuum between electrodes do exist, the primary interest

in this study is to understand the electromechanical response of dielectric material under
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mechanical stress. Therefore, the last equation in the system is the formulation that relates

polarization of materials in the presence of electric fields, which was introduced along with

the concepts of bound charges in Section 2.1.2, and is sometimes referred to as Maxwell’s

equation for polarization in media.

Since polarization can be viewed as redistribution of bound charge density qb, in the

material creating charge potential Db, due to the said bound charge, a relationship defining

polarization P, emerges as Db = −P, where after applying Gauss’ law, the relationship can

be described by Equation (2.32).

qb = −div P (2.32)

However, since bodies can be charged, and polarization alone can not account for it, there

are free charge densities q f , that together with bound distributions make up the total charge

density q = q f + qb. By extension, partial free charge can be written in Equation (2.33).

D f = D − Db = D + P (2.33)

Applying Gauss’ law, div D = q, to Equation (2.33), the partial free charge potential

relationship is formulated as D f = ε0E + P. Since only the partial charge potential is

represented in the formulation, the subscript f can be dropped and the relationship in

Equation (2.19) results, where D is called electric displacement. Maxwell’s equation for

polarization in media simply states that electric displacement is the sum of the effects of

the external electric field in free space and the material net polarization, which itself can be

a function of the electric field.

The electromechanical response governed by Equation (2.13) through Equation (2.19)

provides a robust theoretical and mathematical framework when considering behavior of

dielectric materials. However, this system of seven equations does not produce intuition

when investigating the behavior of materials that are used to solve real engineering

problems. To complicate the subject even further, as discussed in Section 2.1.2, mechanical

properties of media such as molecular structure and granularity, and chemical composition
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of solids that frame the crystalline structure and ionic behavior, have a profound effect

on electromechanical properties of the materials, but are only indirectly accounted for in

the governing equations. Thus, the link between theory and application is weak, and any

further investigation into relationships between the measurable quantities such as elasticity,

polarization, permittivity, and dynamic stress, is warranted in order to be able to properly

predict electromechanical response of capacitors subjected to realistic mechanical loads.

While analytical solutions to the above governing equations even for simple and purely

academic geometries are possible (even though they are not trivial), analytical solutions

based on these theoretical concepts to the more complex and real world materials and

applications are almost impossible. These difficulties are perhaps the greatest reasons for

using the purely empirical, and only relatively recently, numerical approaches to studying

the electromechanical response of materials. The current work attempts to combine

the computational solution, validated by experiments, in order to advance the theory of

piezoelectric response of ferroelectric dielectric inside ceramic capacitors. As can be

seen in the next section, which attempts to address the depth and breadth of study and

literature on the behavior of piezoelectric dielectric materials, the generalized theory of

electromechanical behavior of these materials is rudimentary and warrants more attention.

2.3 Ferroelectric Material Theory and Polarization Characterization Tools

Quartz is a common material on earth’s surface and ever since the observation that

striking it with a ferrous rock produces a spark, crystalline materials have been used

by humans for centuries to start a fire [28]. Piezoelectric properties of quartz were

discovered in the late 19th century by Jacques and Pierre Curie, and since then, crystalline

materials, which are found in nature and exhibit electromechanical properties, have found

a wide range of applications [29]. However, it was not until the mid 20th century that

people have become almost completely dependent on materials that possess a definite

electromechanical response. Now, uses of piezoelectric materials include spark generators
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in common household appliances such as gas stoves, sensors in the form of transducers,

including speakers and microphones, high voltage generators and even fuzes for military

applications [30].

It was not until the late 1950s when materials with piezoelectric properties found

their way into unconventional uses, such as the dielectric material between the electrodes

in capacitors, which helped jump start the computer age. Also, the constant drive to

miniaturize various electronic components, pushed an innovative use of piezoelectric

materials as an insulator due to their high permittivity. Today, piezoelectric materials are

used extensively in aerospace technology, as well as in air munitions fuze circuitry.

In particular, ferroelectric ceramic capacitors, which have a high relative dielectric

constant, on the order of 103, have become almost prolific in recent military and

commercial applications, which require high power density materials [31]. Unfortunately,

due to their electromechanical nature, piezoelectric materials, and especially ferroelectric

ceramics, have strong undesirable instabilities in their dielectric properties based on some

external physical parameters, such as temperature, different types of mechanical stress

loads (tensile, compressive, dynamic acceleration) and external electric fields. Also,

as mentioned earlier, both elastic and piezoelectric moduli of ferroelectric materials

vary wildly with the exact chemical composition, different manufacturing processes,

microstructural impurities, polarization domains and even degrade with age. Even with as

wide of a use of these dielectric materials as is ongoing today, the critical and very complex

relationships between the external electromechanical stimuli and the dielectric response of

piezoelectrics are still poorly understood. In fact, the study of piezoelectric ceramics can

be described as extremely compartmentalized at best.

The partitioning of the study of piezoelectric material behavior is in both the methods

of studying these materials, such as computational and experimental investigations, as well

as based on the particular application of dielectric materials. For example, the behavior of
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a thin film application of ferroelectric PZT on a substrate that undergoes relatively benign

mechanical loads when recording acoustic waves is much different from the investigation

of bulk PZT material in the FEG subjected to shocked compressive mechanical stresses

with pressures approximately eight orders of magnitude higher [12]. As a result, few

constitutive relationships have been proposed, and even fewer have been validated, to

describe the macroscopic behavior of piezoelectric materials, and thus, generalize their

electromechanical response. Even smaller number of relationships have been developed

to predict capacitance response of ferroelectric ceramic devices. Due to the small number

of constitutive models that exist to predict the behavior of dielectric material properties

in the capacitors subjected to environmental conditions for which they were intended,

it is extremely dangerous to extrapolate the limited body of knowledge that does exist,

to correctly predict the behavior of dielectric materials inside the capacitor undergoing

untested dynamic mechanical loads such as drop impacts.

Interestingly enough, before thoroughly understanding the purely piezoelectric

behavior, most of the focus was transfered to studying the more complex electromechanical

properties of ferroelectric ceramic materials, which as stated earlier, also possess complex

hysteresis properties, but also are more widely used as dielectric materials in the capacitors.

Perhaps the most common and studied theories applied to the ferroelectric materials are

based on the Landau concepts of free energy F , developed in the 1950s, which are

phenomenologically fitted to the sixth-degree polynomial and quantitatively attempt to

describe the polarization as a function of applied electric field and mechanical stress. In

Landau theories, free energy is a measure of symmetry constructed from polarization scalar

order parameter and is a physical entity that is zero in the high-symmetry phase, changing

continuously to a finite value as the symmetry is lowered [32].

The first of the Landau relationships is the Landau - Devonshire (LD) theory, which

is most applicable to the bulk ferroelectric materials with uniform polarization near the
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Curie temperature, TC [32, 33]. The LD theory assumes that the polarization is uniform

throughout the crystal and that it responds to both electric fields and strain fields in one

dimension according to Equation (2.34) [32].

F (P, η(P)) =
1
2

aP2 +
1
4

(b − 2Q2/K)P4 +
1
6

cP6 + . . . − EP (2.34)

In the above equation, P is polarization, η is strain, E is electric field, K is elastic modulus

based on Hooke’s law, σ = Kη, where σ is stress, and finally a, b, c and Q are empirically

derived coefficients, describing the nature of the ferroelectric transition. The relationship

of free energy as a function of polarization can take one of two forms: a paraelectric

material relationship shown in Figure 2.9, and the idealized ferroelectric function shown in

Figure 2.10 The response of the free energy function based on the polarization constitutes

Figure 2.9: Paraelectric F w/o Hysteresis Figure 2.10: Ferroelectric F w/ Hysteresis

the phenomenological behavior and describes the transition of the material based around a

reference temperature, T0. Since a = a0(T −T0), the quadratic term sign is tied to the Curie

temperature, where if a < 0; T < TC, the behavior is ferroelectric and if a ≥ 0; T ≥ TC,

the behavior of the material is paraelectric as shown in Figure 2.11. Also, the contribution

of the linear term, as can be seen in Figure 2.12, displays the polarization switching effects

based on electric field orientation and strength. Similar effects of the coefficients b, c
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Figure 2.11: Paraelectric F w/o Hysteresis Figure 2.12: Ferroelectric F w/ Hysteresis

and Q can be observed in the ferroelectric materials as the ones displayed in the previous

two figures. While LD theory can accurately and mathematically describe the hysteresis

relationship of the ferroelectric materials close to Curie temperature, all the coefficients,

which vary greatly with different types of sublattice structures, must be derived empirically

to match the magnitude of the ferroelectric response - a process which is seldom trivial.

Also, while the mathematical description of the P-E hysteresis loops is accurate, the LD

theory does not account for the polarization domain structure in the dielectrics, which

has been attributed to the actual hysteresis behavior and will be addressed later in this

section [19].

The next evolution of Landau theory, which does account for the domain structure

of the ferroelectrics and allows non-uniform polarization, is the Landau - Ginzburg (LG)

theory. The theory postulates that small spatial variations of polarization in the material are

caused by an additional amount of free energy density, ∆FLG, which is proportional to the

square of the magnitude of the polarization gradient, |∇P|2 [32]. The lowest order of the

LG free energy can be represented by the integral of the product of the polarization density

P(r), ~r, which is the d−dimensional spatial vector, and dd, as seen in Equation (2.35).

F1st = a0(T − T0)
∫

dd~r [P(~r)]2 + γ

∫
dd~r [∇P(~r)]2 (2.35)

33



The second term in Equation (2.35) simply accounts for the variation of polarization in case

the different domains are not exactly parallel. The standard Fourier transform of the LG

free energy can be rewritten in Equation (2.36),

F =

∫
dd~k

(2π)d (a0(T − T0) + γk2)|P(~k)|2 (2.36)

where |P(~k)|2 is described by the polarization correlation function g(~r), as per Equation (2.37)

and Equation (2.38) below [32].

g(~r) ∼
kBT
γ

e−r/ξ

rd−2 ; T , T0 (2.37)

g(~r) ∼
kBT
γ

1
rd−2 ; T = T0 (2.38)

In the above three equations, kB is the Boltzmann constant, ξ is the correlation length and

the polarization correlation function can be experimentally obtained using diffuse X-ray

scattering [34].

While the LG theory takes into account different polarization domains, the parameters

to predict the specific ferroelectric material must also be determined experimentally. As

would be expected, the LG theory begins to break down when the correlation length

gets close to the smallest dimension of the domain or when the polarization correlation

function becomes much smaller than the polarization strength, g(~r) << P2. Finally, the

LG theory can be applied to both epitaxial films and to bulk materials where polarization

boundary conditions are applied in order to determine free energy in the bulk material

and at the surface under different strains and external electrical field strengths. However,

the most important implication of the LG theory, is that electromechanical response is

likely tied to the magnitude of the polarization, suggesting that capacitance response may

be bi-directional and that only the change in permittivity is important under mechanical

stress, not necessarily its direction. The uniaxial response of capacitance based on

bi-directional change in permittivity is a significant point, which will later help with

capacitance computational predictions.
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Landau theories reasonably predict the phenomenological behavior of the ferroelectric

materials, but they require extensive experimental investigations for empirically derived

parameters for a specific type of material to quantify its response. Most of the research

that characterizes the ferroelectric hysteresis P − E loops is some derivative of the Landau

theories. However, the remnant polarization and the coercive electric field responsible

for the polarization switch, which are often tied to the grain structure of the material,

are difficult to quantify using the Landau theory. One recent investigation by Wang et

al. attempts to accurately predict the remnant polarization and coercive electric field of the

PZT material using an extension of the Landau theory [35].

Just as in the Landau theory, the study by Wang assumes a sixth-degree polynomial to

predict the free energy, G = G0 +Gup +Gdown +Gwall, but it also assumes volume fractions of

the up and down polarizations of the polycrystalline structure, αup and αdown respectively,

where αup = 1 − αdown. The free energy in the paraelectric state is G0, and the free energy

associated with the walls between the polarization domains is given by Gwall. However, this

extension of the theory assumes that for a large polycrystalline structure the contribution

of wall free energy can be omitted, and thus the resulting expression for the free energy is

given by Equation (2.39) [35],

G = G0 + αIP2
up + αIIP4

up + αIIIP6
up + (1 − 2αup)EPup (2.39)

where αI , αII , αIII are dielectric stiffness coefficients. The average polarization P, in the

hysteresis loop can be represented by P = (2αup − 1)Pup, where the volume fraction of the

upward polarization is given by a relatively simple expression in Equation (2.40) [35].

αup =
arctan[β1(E − Ec) + β2(E − Ec)3] + π/2

π
(2.40)

In Equation (2.40), Ec is the coercive field and the constants β1 and β2 are dependent on

particular material grain orientation, grain size and grain boundary mechanical conditions.

Again, these constants must be determined empirically, but once they are obtained, the
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behavior of the P − E hysteresis of the specific type of ferroelectric material can be

quantified. The resulting expression in Equation (2.40) for the ferroelectric hysteresis

accurately predicts the coercive electric field and the remnant polarization using a

relatively simple algebraic equation, which is a significant improvement over the original

phenomenological Landau theories, but is it still applicable to only specific ferroelectric

behavior. However, work by Wang suggests that the relationship between polarization, and

by extension piezoelectric response to mechanical stress should be mathematically simple,

which is the foreshadowing of simple nature of the capacitance response of ferroelectric

ceramic components subjected to high-g drop impacts.

While discussion about the phenomenological and mathematical models can be

described by some variation of the Landau theories, which can incorporate the polarization

domain structure, the techniques for measuring and observing the domains and domain

walls also require some attention. The techniques for observing and measuring

polarization, and thus identifying the domains can be summarized in three different

approaches.

The first technique, which was proven fairly recently, in the 1990s, is Scanning Probe

Microscopy (SPM). SPM uses a Scanning Force Microscope (SFM) to image the domains

in ferroelectric materials by swiping a sharp probe with a cantilever-type device over the

surface of the material and measuring small deflections of the beam with a piezoelectric

transducer [19]. The resolution that this device is capable of measuring is on the order of

10−4 N/m. While SPM can accurately measure single crystal domains, which correlate well

based on their spontaneous polarization throughout the depth of the grain, investigating

polycrystalline structures is still difficult.

Another tool for measuring the polarization domains, is the grazing incidence X-

ray scattering technique. The X-ray scattering technique uses spatial modulation of the

polarization vector across a film surface, which creates an image with Bragg diffraction
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peaks [19]. Thus, X-ray scattering is particularly useful for identifying the domains with

180◦ periodicity, and because it is possible to monitor the polarization dependence based

on temperature, it is commonly used in ferroelectric materials to determine the Curie

temperature, Tc [19]. As mentioned earlier in this section, X-ray scattering is also useful

for determining the domain volume fraction of the polarization orientation and has been

used to describe polarization switching and observe fatigue of the dielectric materials

in the capacitors [36]. Finally, X-ray scattering is also useful in observing the domain

wall motion in thin ferroelectric materials. While the X-ray scattering technique is well

suited for describing domain and domain wall motion that can be useful in determining the

ferroelectric hysteresis of thin films, a different tool is more effective at determining the

domain polarization with a higher degree of accuracy.

The third, and last tool described here is Transmission Electron Microscopy (TEM),

which is capable of measuring domain polarization on the order of nanometers. TEM

is particularly useful in materials, which use chemical Molybdenum doping in order to

accentuate the ferroelectric properties by increasing remnant polarization and coercive

electric field [19]. In doped dielectric materials, polarization structure, and thus domain

and domain wall structure is complex due to the presence of the added atoms in the

sublattice. Hence, examining polarization orientations requires much greater resolution,

which is available in TEM.

The above domain investigative techniques are useful in obtaining empirical coeffi-

cients that can be applied in quantifying the behavior of the ferroelectric materials using

the Landau theories mentioned earlier. However, because domain measuring tools deter-

mine the polarization orientation only on the surface, and are thus mainly applicable to thin

films, bulk material behavior is more difficult to describe using established mathematical

models and therefore, a computational model approach is preferred in determining ferro-

electric response through investigation of interactions of field variables affecting capaci-
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tance of components. Before describing computational models, which attempt to predict

ferroelectric, but more generally piezoelectric response, it is important to summarize some

of the recent studies that have been performed by various government agencies and other

scientific communities in order to gain an understanding of where the research is currently

focused.

2.4 Recent Work On Component Reliability

The dielectric materials have been studied somewhat extensively, as evidenced by

the material behavior theories described earlier and by the number of methods developed

to study the surface of ferroelectric ceramics. However, the electromechanical response of

actual engineering components used to run circuitry, has been neglected. Unlike the surface

characterizing tools, understanding electromechanical response of capacitors not only

directly helps investigate the intermittent reliability problems of circuitry components, but

also helps to grasp the bulk ferroelectric material behavior. Predicting changes in the bulk

ferroelectric ceramics under mechanical stress would allow electronic package designers

to account for variations in capacitor performance based on response of materials and help

create more reliable circuitry. However, in order to apply realistic, high-g mechanical loads

to capacitor models, one must first be able to understand and model stresses and strains

on the printed circuit board, on which devices are mounted. From the next subsection, it

is clear that printed circuit board dynamic response studies are extremely sparse for drop

impacts above 3,000 g, and thus, must be first accurately modeled in order to be able to

computationally expose high-g electronic components to realistic mechanical loads.

As mentioned earlier, JEDEC standards that specify bending test parameters of the

printed circuit boards are available for the industry to test board-level interconnects [37].

Also, parameters such as peak acceleration and pulse duration to determine the ability

of electronics subassemblies to withstand moderately severe mechanical shocks specified

along with board level drop test procedures [1] have been used by scientific community
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and commercial industry to standardize testing and quantify the performance of electronics

packages. The conditions outlined in the JEDEC standards for board level drop tests are

partly categorized based on peak acceleration applied to the component and subassemblies,

and the pulse duration as measured above 10% of the peak acceleration. Unfortunately, the

maximum peak acceleration characterized in these standards is capped at 2,900 g with the

shortest pulse duration of 0.3 ms, which results in the total change in velocity of 5.43

m/s [38]. For most commercial applications where it is widely excepted that nominal peak

accelerations are on the order of 1,500 g with a pulse duration of 0.5 ms and total velocity

change of 4.68 m/s, these standards provide a solid framework to test the performance of

electronic circuitry. Thus, a large amount of work has been performed to characterize the

behavior of surface mounted component circuit boards under the commercially relevant

operating environments [39, 40]. However, the mechanical stress that is of interest in this

study is at least twice the change in velocity, with peak accelerations on the order of 20,000

g, rendering most board dynamics studies inapplicable to the current work.

Perhaps the closest studies that would be relevant to the present work are experimental,

as well as computational investigations of material behavior under stress, which have a

chance of correlating to mechanical modes of failures of capacitors. Ball Grid Array (BGA)

are among the most studied cases due to the wide use of such solder layouts in commercial

electronics technology, even though the soldering technique used as part of current studies

are re-flow oven soldering, which is entirely different in both structural layout and material

compositions from BGA interconnects. Despite this lack of similarity, correlations between

high and low loading rates to the failure modes of BGA based on various mode ratios

and critical strain energy release rates showed that the pad cratering failure mode is

dependent on the direction of the applied load and the stiffness of the circuit board and

components [39]. Also, investigations into incorporating prognostic health monitoring and

correlations between electrical resistance changes and circuit failure under tests outlined
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by the JEDEC standards have also been met with some success [41]. However, most of

the studies use resistors to monitor structural integrity of the interconnects and to predict

intermittent loss of contact under critical strains and strain rates [40, 42]. Once again, even

these studies are limited to no more than 3,700 g peak accelerations, but the progression

failure of surface mounted resistors is still applicable.

The failure of resistors mounted on the board correlates very well in the laboratory

with the strain of the surface on which the device is soldered as can be seen in Figure 2.13.

Not only does the component fail progressively, but in terms of circuitry and current

monitoring, the failure mechanisms can be classified into three stages, crack initiation,

intermittent failure life and permanent failure life, as can be seen in Figure 2.14 [40].

Therefore, it should not be surprising if capacitance measurements in the current study

exhibit similar failure progression, with intermittent connectivity in correlation to board

strain, despite the shock being an order of magnitude higher than explored in the work by

Luan.

Figure 2.13: Dynamic Responses During 22nd drop. ©2006 IEEE
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Figure 2.14: Solder Joint Failure Process. ©2006 IEEE

Performance of the PCB has also been studied under relatively low loading vibration

conditions [43] as well as using monotonic bend testing methods [44] and have shown that

greater component failure rate is closely related to the board geometry and the amount of

board bending that exists at the pad cratering failure site. Computational work comparing

the effects of elasticity modulus of solder material, board thickness and trace width show a

good correlation to the component impact life under drop tests that once again cap out at

the JEDEC maximum peak acceleration for subassemblies of 2,900 g [45].

From previous work, it is clear that board geometry, materials and testing conditions

of drop-tests such as drop orientation, peak loads, acceleration profiles and pulse durations

have a significant effect on board dynamics. These effects include strain amplitude at the

surface of the board on which the components are assembled and strain response frequency,

which correlates directly to strain rate. Since strain and strain rate have both been shown

to correlate with and predict mechanical failure mechanisms, understanding and being able

to predict, and accurately model, board dynamics under shock is of the utmost importance
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before attempting to learn electromechanical response of components mounted on the PCB.

Computational work validated by experimental results has been done to predict board

strain using explicit finite element models with the input acceleration measured during

the drop tests, and to investigate the stresses present in the BGA solder joints during the

impact [40, 42]. However, the maximum peak input acceleration in this computational

work was on the order of 3,700 g, which is below the scope of the current study.

It is clear that in order to investigate the modes of failure of a wide range of solder

joint geometries and materials, under more extreme mechanical shocks and acceleration

environments, it is critical to first have a clear understanding of the board dynamic response

and to be able to predict board strain in at least a pseudo 1D case. Therefore any

computational model that has a hope of exposing capacitors to realistic high-g dynamic

loads must first be validated with experimental data. Thus, effects of model parameters

such as the isotropic Young’s Modulus, board density and contact types between the board

and the drop tower fixture on the peak strain amplitude and dominant frequency of the

strain must be investigated based on the measured acceleration profile and half-sine wave

acceleration input matching the energy of the total velocity change. Once the computational

model is validated to accurately simulate the loads to which devices are exposed under

high-g drop impacts, it can be used to obtain the interconnect acceleration profiles in order

to apply appropriate boundary conditions to the surface mounted components in a capacitor

sub-model.

After accurately modeling mechanical stress at the precise location on the printed cir-

cuit board where the component is soldered, the acceleration profiles can be applied as

boundary conditions to the capacitor sub-model itself in order to predict its electromechan-

ical response of the dielectric materials inside capacitors. As stated earlier, dielectrics based

on ceramic materials such as BaTiO3 that are now frequently used in MLCC, are also piezo-

electric. However, their performance, specifically stability of permittivity in the direction
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normal to the electrode plates, which directly affects capacitance under high mechanical

stress and more extreme acceleration profiles than have been traditionally explored, has not

been thoroughly investigated.

Recent studies conducted by the capacitor manufacturing industry suggest that

capacitance primarily changes due to flex cracking of the dielectric material [25, 46, 47],

called flexural mode of failure. Also, under certain static loading conditions such as ones

generated by bending tests, capacitance reverts back to within 1% of its original value

immediately after the stress is removed. Such behavior of components motivates the need

for in-situ monitoring during highly dynamic tests in addition to pre/post-test capacitance

measurements [47]. Intermittent nature of electronic components is not a new phenomenon

and has recently been closely studied as it affects the reliability of BGA packages through

the monitoring of resistive loads [40, 42]. However, changes in capacitance during the

shock event have not yet been quantified, particularly with acceleration profiles with

peak values greater than those encountered in most commercial applications. Therefore,

property changes of bulk dielectric materials used inside capacitors exposed to high-g drop

impact must also be investigated.

Few studies have been performed to investigate the piezoelectric behavior of raw

dielectric materials such as PZT under quasi-static conditions and dynamic mass drop

experiments. The voltages and currents that are generated by the piezoelectric materials

have been closely related to magnitude and type of mechanical load [17]. Also, it has been

discovered that stress applied to the block of PZT, where during the dynamic stress event

the charge built up on the surface does not allow enough time to dissipate, leads to higher

currents than during the quasi-static stress tests [18].

However, quasi-static bending tests, and especially hydrostatic compression experi-

ments, fail to produce mechanical stress profiles similar to those experienced by compo-

nents during impact. Also, exploring response of raw PZT material under carefully con-
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trolled conditions, while a good starting point in understanding electronics behavior under

large mechanical stresses, does not address the gap in understanding of reliability issues of

capacitors employing ferroelectric dielectric materials inside real engineering components,

particularly when it comes to predicting electromechanical response of capacitors before

mechanical failure occurs.

While flex cracking of the capacitors, which is predominantly driven by the

mechanical stress/strain response of the materials has been thoroughly studied, and the

electromechanical response of some of the raw ferroelectric materials used as a dielectric

inside capacitors has been sparsely characterized, the relationship between the mechanical

dynamic stress conditions, indicative of high-g acceleration profiles, and capacitance of

realistic engineering devices has not been even considered anywhere in the literature.

Therefore, the current work investigates the electromechanical response of capacitors

undergoing drop impacts on the order of 20,000 g through the use of experimentally

validated computational piezoelectric FEA models, to better understand failure modes

and mechanisms of electronics exposed to large dynamic mechanical stresses. However,

before employing finite element codes that have been developed using theory described

in Section 2.2 and verified by constitutive material models in the laboratory, software

evolution should be at least addressed and the final iteration of the piezoelectric model

code must be thoroughly described, which is accomplished in the following two sections.

2.5 Early Development of Computational Capabilities

A fair amount of study of ferroelectric materials has been performed by government

agencies interested in dielectric properties of capacitor materials as well as by agencies

interested in pulsed power applications of ferroelectrics. Arguably, the greatest amount

of experimental investigation of the ferroelectric materials and their response has been

performed at the SNL under various mechanical, thermal and electrical loads. Specifically,

the body of work performed by SNL, which measured dielectric response of the PZT 95/5
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based on variations in porosity, temperature, mechanical shock and applied electric fields is

the most notable. As a result of the experiments performed by SNL in the 2000s, a library

of parameters and material sensitivity of ferroelectric PZT to these parameters was built in

order to aid development of the computational Ferroelectric-Anti-Ferroelectric (FE-AFE)

model in the ALEGRA-EMMA code.

One of the studies conducted at SNL investigated the effect of microstructural porosity

of the material on the rise times in current and voltage of the mechanically shocked bulk

PZT 95/5 material. This study generated shocks in the range of 2.5 GPa to 4.5 GPa and

introduced spherical Polymethyl Methacrylate (PMMA) impurities ranging from 15 µm

to 140 µm in diameter while holding the same nominal density of the bulk material at

7.30 g/cm3 [13]. The results of this study showed that as long as the nominally poled bulk

material remained at a constant density, the size of the spherical porous impurities had little

effect on the overall current and voltage rise times of shocked materials. However, the most

pronounced effect was when the impurities were on the order of 15 µm, which was close to

the average grain size of the bulk material, eluding to the fact that grain structure and size

are important in predicting ferroelectric response of the dielectrics [13].

A series of different studies conducted at SNL investigated the constitutive mechanical

properties of the PZT undergoing shock compression [14–16]. The studies used a gas gun

to launch sapphire plates at poled and unpoled circular disks of PZT with dimensions of

4 mm in thickness and 25.4 mm in diameter, and measured the Hugoniot states as well

as current rise times generated by the material while varying the initial density, external

electric field and microstructure. The shock wave generated in the experiments ranged

from 0.9 GPa to almost 5 GPa, while density was varied by as much as 4% by weight from

the nominal density of 7.30 g/cm3. Also, by varying the resistance load on the PZT sample,

the generated electrical fields ranged from 0.3 to 36.8 kV/cm. The results of the studies

indicate that as long as the initial density of the material is fixed, the external electric
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field and the poling state of the sample had little effect on the Hugoniot states or shock

propagation through the material. However, as expected, a complex relationship emerged

between the FE-AFE phase transition of the material from the unshocked to the shocked

state and the strength of the initial impact. Under a lower range of pressures, the material

exhibited an incomplete phase transition as characterized by higher current rise times, and

lower peak currents, while under higher shocks, a slow yielding process was observed due

to the brittle nature of the material [15].

The studies conducted at SNL in the 2000s quantified the electromechanical behavior

of the bulk PZT 95/5 material. Measured current rise times of the shocked ferroelectric

material and strength of the generated electric field under various resistive loads, the

material’s sensitivity to different sizes of microstructural porosity and density, as well as the

mechanical response of the material based on the strength of the shock and aforementioned

parameters laid the groundwork for describing the ferroelectric phenomenon. The

most important outcome of these studies was an excellent empirical framework for the

development and refinement of the FE-AFE model in the ALEGRA-EMMA code. It is

important to note that while this groundwork provided a comprehensive set of parameters

to describe the electromechanical response and generate a list of important factors to

correctly describe both phenomenological and quantitative response of the PZT 95/5 to

mechanical shock, these parameters will vary greatly with different ferroelectric materials.

Thus, no constitutive relationships for the electromechanical response based on the shock

strength or the orientation of the mechanical shock compared to the poling direction

of the ferroelectric materials were developed, meaning that each ferroelectric material

requiring numerical solutions in ALEGRA-EMMA would need to undergo a similar set

of experimental studies in order to generate the correct material parameters. In contrast,

the present work will attempt to quantify piezoelectric behavior of a ferroelectric class of

materials subjected to drop impact mechanical loads representative of military application
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environments, by computationally predicting the electric potential across the charging and

discharging capacitors based only on a set of the already established elastic, piezoelectric

and permittivity moduli, which will hopefully eliminate the need for laborious experimental

investigations for every type of ferroelectric.

From the work with ferroelectric materials described above, it is clear that polarization

domains, domain walls and microstructural impurities on the order of the size of the

individual grains have a significant effect on the dielectric properties of such materials,

and that the orientation between the poled axis of ferroelectric material and the applied

mechanical stress regardless of the magnitude is extremely important to understanding the

piezoelectric response of dielectrics. Furthermore, tools such as TEM, to measure the

polarization domain structures at least on the surface, have recently been developed in

order to aid in domain characterization and polarization orientation investigation. Finally,

theoretical development of the Landau theories, as backed up by empirical studies, has

shown that ferroelectric behavior transforms into a paraelectric relationship, which no

longer exhibits hysteresis past the Curie temperature. Therefore, empirical investigations

into the behavior of the ferroelectrics have been quite extensive, especially with the recent

and increasing interest in using these materials as dielectrics inside capacitors. However, as

mentioned earlier, investigations of electromechanical response of the purely piezoelectric

effect, while easier to calculate using the previously developed theory in Section 2.2 due to

the lack of hysteresis behavior, have been fairly sparse. Thus, it is the goal of this work to

implement a computational model validated by experimental results in order to establish a

constitutive relationship between piezoelectric response of ferroelectric ceramic capacitors

based on applied mechanical load present during high-g drop impact.

Any phenomenological response of the purely piezoelectric behavior of ferroelectric

ceramics, which are subjected to the dynamic mechanical stresses present in the circuit

board containing electrical components, should produce an electromechanical response
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evidenced by the change in capacitance, and thus, RC time constant for a particular

capacitor. Consequently, while it is impossible to completely eliminate or significantly

reduce the mechanical loading to which the circuit board is subjected inside a munition

undergoing an impact, regardless of the amount of passive shock reduction techniques such

as potting, it might be possible to develop the electromechanical response relationships of

the electrical components, that are mounted on the PCB. Based on these relationships,

minimizing the electromechanical response of capacitors inside circuitry, will reduce the

negative effects of the mechanical stress and increase the overall reliability of the electrical

components during impact. Hopefully, the newly developed constitutive relationships for

electromechanical response to operationally representative mechanical loads based on the

change in polarization and permittivity due to a purely piezoelectric response of dielectrics

inside capacitors may later be extended to aid in the design of more reliable munitions

electronics. Since the piezoelectric model will be used to predict capacitance changes

under mechanical stress, the next section describes its theoretical basis and computational

implementation to calculate the electromechanical response.

2.6 Piezoelectric Model in ALEGRA-EMMA

The multi-physics and multi-material finite elements analysis software, ALEGRA-

EMMA, which is currently being developed by Sandia National Laboratories solves

for a quasi-static electric field approximation of the electromechanical response of

various dielectric materials [22]. Because the fundamental responses of piezoelectric

and ferroelectric materials are different below the Currie temperature, two separate, and

perhaps the most mature models in the code are the FE-AFE Ceramic and Piezoelectric

models. The FE-AFE Ceramic model provides solutions for ferroelectric materials such as

PZT95/5 undergoing mechanical shocks, and uses the mathematical relationships provided

in Section 2.2, as well as the parameters derived from experimental work described in

Section 2.4. One particular study used the FE-AFE model to compare computationally
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predicted and experimentally measured rise times in voltage and current generated by

the depolarization of PZT with an explosive shock wave [48]. The Piezoelectric model,

which calculates the electromechanical response of piezoelectric materials, regardless of

whether or not they exhibit hysteresis behavior in the polarization versus applied electric

field relationship, is a simplified derivation of the theory developed in Section 2.2 based on

two, fairly accurate assumptions - every dielectric material is a perfect insulator and every

conductor is a perfect conductor [21]. These two assumptions allow the implementation

of a quasi-static solution to the otherwise very complex set of governing equations.

Because in this work the primary concern is the response of piezoelectric materials

to mechanical stress, the most applicable model for investigation of electromechanical

response of capacitor dielectric materials subjected to mechanical loading inside an

impacting munition is the Piezoelectric model. The fact that dielectric materials have large

relative permittivities and electrodes in capacitors are made of highly conductive metals,

allows the materials to reach electromechanical equilibrium on the order of picoseconds.

However, because the timescales of interest of current rise times shock impact are on the

order of microseconds, quasi-static electric field approximation will have minimal effect on

the accuracy of the piezoelectric response calculations.

The origins of the ALEGRA-EMMA Piezoelectric model can be traced back to

the 1970s, when computations using the WONDY IV code were used to model the

piezoelectric response of the transversely isotropic ferroelectric ceramics [49]. Using linear

constitutive relationships to relate mechanical stress Ti j, as well as the electric displacement

Di, in the material, to the spacial displacement ui, and applied external electric field Ei,

through the use of elastic moduli constants CE
i jkl, piezoelectric constants ei jk, and dielectric

constants ε s
i j, voltage drop with various resistive loads across electrodes placed at x = 0

and x = h3 was calculated for a rectangular slab of ferroelectric ceramics undergoing a

time-dependent mechanical load normal to the x2 face [49]. The results of this early work
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indicated that with a linear relationship between stress as well as electrical displacement,

and strain and electric field, the electrical output of most normally shocked ferroelectric

materials can be qualitatively described through various relationships between elastic,

piezoelectric and dielectric constants. The study also noted that the boundary condition

considerations are extremely important when designing experiments to investigate the

piezoelectric response of ferroelectric ceramics [49], once again validating the requirement

for accurate and experimentally verified board dynamics model for the PCB housing

electrical components.

In the 1980s, the SUBWAY code developed by SNL further improved computational

models for dielectric devices by implementing a quasi-static electric field approximation

when solving the governing equations for electromechanical response [21]. The

quasi-static approximation is based on neglecting the changing magnetic induction

and by assuming that the electric field responds instantaneously to changes in charge

distribution [21]. The two assumptions are a direct result of approximating conductors as

perfect conductors, where the charge relaxation time is almost instantaneous and realizing

that the electric field inside the conductor is zero, as well as by approximating all dielectric

materials as insulators, where charge relaxation time is very long. With the magnetic

induction neglected, Faraday’s law implies that the electric field is approximated by the

gradient scalar potential φ, in Equation (2.41).

Ei = −
∂φ

∂xi
(2.41)

Using the previously described Gauss’ law and the relation for electric displacement in

Equation (2.17) and Equation (2.19) respectively, the electric potential in a dielectric

material can be expressed by Equation (2.42).

∂

∂xi

(
εi j
∂φ

∂xi

)
=
∂Πi

∂xi
(2.42)

Discretizing the Ith conductor material into a set of points CI , in N conductors, also

specifying VJ as the value of the electric potential on that conductor and applying boundary
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conditions on the electric potential, where it is constant at any particular instant, as well as

using Kirchhoff’s laws from a simple resistive circuit, a closed form solution for the electric

output could be determined in a dielectric device [21].

The current version of the Piezoelectric model, which will be used in this work is

available as part of the ALEGRA suite of software developed by SNL. ALEGRA is an

amalgamation of the previously developed packages such as Pronto, CTH and others,

that solve the governing equations in the Lagrangian, Eulerian or Arbitrary Lagrangian-

Eulerian (ALE) frames of reference using finite element discretization and referencing

material libraries for closed form solutions [50]. ALEGRA-EMMA is a subset of the

ALEGRA suite of software and contributes a unique electromechanics capability by also

solving Maxwell’s equations of electrodynamics along with constitutive relationships for

the electromagnetic wave propagation in medium, in addition to the conservation of mass,

momentum and energy equations. Thus, the governing equations can be summarized by

Equation (2.13) through Equation (2.19). The Piezoelectric model, which is available in

ALEGRA-EMMA solves the governing equations, but with the addition of two constitutive

relationships of piezoelectricity [51].

In the Piezoelectric model, the two constitutive models linearly relate the strain tensor

{S g}, and electric field tensor {E g}, to the stress tensor {T g}, and electric displacement tensor

{Dg}, in the material as can be seen in Equation (2.43) and Equation (2.44) respectively,

{T g} = [Cg]{S g} + [eg]t{E g} (2.43)

{Dg} = [eg]{S g} + [K g]{E g} (2.44)

where the 6 × 6 matrix of the elastic moduli is represented by [Cg], piezoelectric moduli

are denoted by the 3× 6 matrix [eg], and the 3× 3 permittivity moduli matrix is denoted by

[K g] [51]. For the purposes of describing the Piezoelectric model, the symbols in cursive

font such as {E g}, represent quantities with respect to un-deformed coordinates, while the

typeset symbols such as E, represent quantities with respect to current coordinates, as
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they relate according to the deformation gradient F, defined earlier in Equation (2.20).

Also, superscripts ‘g’, denote values with respect to material coordinate axes, which is the

coordinate system with respect to which the user inputs the properties of the material and

with respect to which most of the textbook values for elastic, piezoelectric and permittivity

material properties are defined. On the other hand, superscripts ‘G’, are properties defined

with respect to the problem coordinate system where the calculations are performed.

In order to calculate the electromechanical response of piezoelectric materials, the

process is broken down into two separate phases. In the first, the setup phase, the elastic

[Cg] and piezoelectric [eg] moduli that are provided by the user for the particular material

are transformed into Voight-Mandel representations [C̃g] and [ẽg], using the Equation (2.45)

and Equation (2.46) below [51].

[C̃g] =

 [Cg
nn]

√
2[Cg

ns]
√

2[Cg
ns] 2[Cg

ss]

 (2.45)

[ẽg] =


eg

111 eg
122 eg

133

√
2eg

123

√
2eg

113

√
2eg

112

eg
211 eg

222 eg
233

√
2eg

223

√
2eg

213

√
2eg

212

eg
311 eg

322 eg
333

√
2eg

323

√
2eg

313

√
2eg

312

 (2.46)

The elastic [C̃g], piezoelectric [ẽg], and permittivity [K g] moduli are then transformed

into global problem coordinates elastic [C̃G], piezoelectric [ẽG], and permittivity [K G]

moduli, using the Voight-Mandel orthogonal rotation matrices [51]. The final step of the

setup phase is transforming the global Voight-Mandel representations of the elastic [C̃G],

and piezoelectric [ẽG] moduli into the global representations using Equation (2.47) and

Equation (2.48) below [51].

[CG] =
1
2

 2[C̃G
nn]

√
2[C̃G

ns]
√

2[C̃G
ns] [C̃G

ss]

 (2.47)
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[eG] =
1
√

2


√

2ẽG
111

√
2ẽG

122

√
2ẽG

133 ẽG
123 ẽG

113 ẽG
112

√
2ẽG

211

√
2ẽG

222

√
2ẽG

233 ẽG
223 ẽG

213 ẽG
212

√
2ẽG

311

√
2ẽG

322

√
2ẽG

333 ẽG
323 ẽG

313 ẽG
312

 (2.48)

In order to specify the orientation of the polarization angle θ, or in other words the

polarization domain orientation discussed in Section 2.4, an input parameter [agG], in

Equation (2.49) is specified, which establishes the direction cosine matrix of the material

moduli with respect to the problem coordinates [51].

[agG] =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 (2.49)

The second phase in predicting the piezoelectric response is a series of calculations,

which update with every time step based on the elastic, piezoelectric and permittivity

moduli, the rotation matrix, and the deformation gradient. In order to calculate the un-

rotated Cauchy stress tensor, σu = RtσR, the spatial mechanical polarization πG, and the

spatial permittivity tensor KG, the spatial electric field EG, and the polar decompositions V

and R, of the deformation gradient F = VR, are also required at each time step [51]. First,

the electric field components EIJ, are calculated using EIJ = 1/2(F tF − 1), and then the

strain {S G}, is calculated using the expression in Equation (2.50) [51].

{S G} =



S 1

S 2

S 3

S 4

S 5

S 6



=



E11

E22

E33

2E23

2E13

2E12



(2.50)

The electric field EG, which is in terms of the current coordinates is then represented in

the un-deformed coordinates using {E G} = [F t]{EG}, so that the 2nd Piola Kirchhoff stress
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tensor {TG}, in the global coordinates can be calculated according to Equation (2.43) [51].

The Cauchy stress tensor is calculated using the proper operators F, and TG, of the

deformation gradient [F], and the 2nd Piola Kirchhoff stress tensor {TG}, respectively

through the expression σ = (1/J)FTGF t, where J is the determinant of [F] [51]. At

this point all the quantities are known and the next iteration of the mechanical polarization,

de-rotated Cauchy stress tensor and permittivity moduli are evaluated in Equation (2.51),

Equation (2.52) and Equation (2.53) respectively.

{πG} =
1
J

[F][eG]{S G} (2.51)

σu = RtσR (2.52)

[KG] =
1
J

[F]{K G}[F t] (2.53)

It is clear that information on elastic, piezoelectric and permittivity moduli along

with the rotation matrix specifications of the particular material is required in order

to calculate the piezoelectric response. While these moduli for specific materials are

extremely sensitive to the exact chemical composition of ferroelectric ceramics as well

as to the accuracy of the specific measurement techniques, the nominal parameters for the

elastic, piezoelectric and permittivity moduli have been previously published for materials

such as polarized, transversely isotropic Barium Titanate [52] and certain compositions

of PZT [11, 27, 53]. Thus, it is possible to computationally investigate the quantitative

response of piezoelectric materials based on the correct structural layout of dielectric

specimens inside capacitors and varying mechanical loads using the Piezoelectric model

in ALEGRA-EMMA.

2.7 Purpose of the Present Research

As previously mentioned in this chapter, ferroelectric ceramics have recently been

extensively used as dielectric insulating materials inside capacitors in aerospace circuitry

technology. Particularly, capacitors have been implemented as detonators of explosives
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inside hard target weapons and also as elements of DC circuitry inside a munition

fuze. The mechanical loading that the weapons undergo when impacting a target

create an environment which has been poorly understood and seldom researched, due

to its uniqueness. Thus, to this date, little research has been done to investigate the

purely piezoelectric response of ferroelectric materials to describe their electromechanical

behavior when subjected to mechanical stresses present in impacting munitions.

Most of the current experimental research into the behavior of ferroelectric materials

has been focused on the material response to explosive mechanical shocks, which produce

high pressures and particle velocities at the material’s speed of sound, in order to investigate

the ferroelectric to anti-ferroelectric phase transition when generating pulsed power. Even

material specific computational models to predict this ferroelectric to anti-ferroelectric

transition have also been developed by SNL. Also, mathematical models and theories of the

ferroelectric material response, such as the Landau theories, have been developed to help

phenomenologically describe the material polarization in response to applied external field

and quantify the hysteresis effect of ferroelectric ceramics. Finally, an extensive amount

of research has been done to look at the behavior of thin films of piezoelectric materials

specific for their transducer applications.

While almost no effort has been expended to study the response of the bulk material

inside capacitors subjected to mechanical impact loading representative of the environment

inside the impacting munitions, all the previous work described in this chapter points to

the fact that purely piezoelectric response to applied mechanical load is of the utmost

importance when examining the capacitance changes of components that use ferroelectric

ceramics as their dielectric. With the development of the piezoelectric computational

model, it is now possible to closely investigate piezoelectric capacitance response of

the dielectric materials, and more specifically ferroelectric materials inside capacitors

subjected to different types and magnitudes of mechanical stresses. In particular, using
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the Piezoelectric model in ALEGRA-EMMA described in Section 2.6, it is possible to

predict the purely piezoelectric, electromechanical, response of ferroelectric ceramics, such

as Barium Titanate, as long as the nominal elastic, piezoelectric and permittivity moduli are

specified. Thus, the research objectives of this present work comprise the following:

1. Using the drop tower, realistically recreate the mechanical loading environment to

which circuitry inside an impacting munition is subjected, measure the impact acceleration

and one-dimensional strain on the PCB surface to which electronic components are

soldered, and create a solid dynamics model in ALEGRA-EMMA, which accurately

simulates the measured stress environment at locations on the board where the capacitors

are mounted.

2. After dynamic board response is quantified in the first objective, experimentally

measure capacitance response of capacitors subjected to the same mechanical drop shocks

to detect and describe possible mechanical and electromechanical modes of failure.

3. Create a computational finite element model of the capacitor subjected to the same

stresses identified in objective 1 in order to determine if purely piezoelectric response

can emulate and predict the same capacitance changes measured experimentally during

completion of objective 2.

The overall goal of the present research is to contribute to the body of knowledge of

electromechanical response of ferroelectric materials used as dielectric insulators inside

capacitors subjected to a unique set of mechanical loads by computationally modeling the

capacitance response of components shocked in the laboratory using the drop tower. It

is hoped that as a result of the knowledge gained from this present work, more reliable

aerospace circuitry technology can be developed in the future by ensuring that capacitors

are designed to address the dominant mechanical and electromechanical modes of failure,

and to withstand high-g dynamic stresses with greater reliability and predictability.
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III. Methodology

As mentioned in the previous chapter, the munitions impacting hard targets undergo

high-g shocks where the circuit boards packaged inside fuzes and housing

capacitors are exposed to acceleration profiles with peaks on the order of 20,000 g.

However, prior to exploring the electromechanical response of the dielectric materials

inside capacitors, a computational model of the PCB has to be validated against the

experimentally obtained dynamic response of the board subjected to high-g drop tower

tests. Therefore, board strain oscillation frequency and amplitude calculations by the

PCB computational model must first closely match the same parameters measured in the

laboratory under similar drop impact conditions. Once the computational board dynamics

closely correlate to the experimental strain measurements, calculated acceleration boundary

conditions at the locations where the capacitors are soldered are applied to the sub-model of

the capacitor in order to compute the electromechanical response. Finally, the results from

the capacitor sub-model must be validated by the experimentally measured capacitance

changes under the same impacts.

Thus, in this chapter, the methodology for reaching the objectives outlined in

Chapter 2 are described in detail. First, the experimental procedures used to obtain the

dynamic response of the PCB material representative of the circuit board inside munitions

are described. Then, experimental set-up and techniques for measuring capacitance of

devices undergoing drop tests are explained. Later, procedures for sample preparation,

SEM characterization of the dielectric material and mapping of electrode layout structure

are outlined. Finally, the computational ALEGRA-EMMA models used to simulate

shocked board dynamics and the electromechanical capacitance response of capacitors,

as well as their solid dynamics and electromechanics input parameters are specified.
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3.1 Experimental Set-Up for Measuring PCB Dynamic Response

In order to simulate high-g stress environments in the laboratory, a 10 ft MTS drop

tower located at the Munitions Directorate of the Air Force Research Laboratory (AFRL)

on Eglin Air Force Base (AFB) was used as part of the experiment to gather the acceleration

and board strain data for validating the computational board dynamics model. A felt

programmer of 1/8 inch thickness was inserted between the steel seismic mass resting

on the shock absorber and the aluminum anvil, assisted by the bungee cord, as shown in

Figure 3.1, in order to help shape the acceleration profile. The acceleration profile shaping

felt programmer was progressively more compacted with every drop of the anvil, making it

absolutely necessary to gather accelerometer data during every drop regardless of whether

or not the drop height was changed. Therefore, a 4340 stainless steel fixture, which was

bolted to the anvil, contained a single Endevco 7270A-60K accelerometer for measuring

the acceleration in the single, z-direction, during every impact.

Figure 3.1: 10 ft MTS Drop Tower
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The PCB chosen for this study was an ISOLA 370HR rectangular circuit board test

specimen with dimensions 60.325 mm × 19.05 mm × 1.524 mm clamped to the fixture

using stainless steel clamps and screws as shown in Figure 3.2. The rectangular shape

of the printed circuit board in the clamped configuration exposes the surface of the PCB

to an overwhelmingly uniaxial surface strain in the x-direction after the impact. The

pseudo one-dimensional strain profile simplifies the boundary conditions needed to study

the electromechanical response of the capacitors and allows for easier implementation of

the capacitor sub-model input parameters. Finally, the circuit board itself was fitted with

a Vishay C2A-06-062LW-120 strain gage on the top surface to measure the lengthwise,

x-direction, uniaxial strain response of the board during impact.

Figure 3.2: ISOLA 370HR Board Specimen Test Set-Up

During the experiment, the uniaxial surface strain profile of the board gathered by

the strain gage and the acceleration profile gathered by the accelerometer mounted on the
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fixture, were collected at a data rate of 1 MHz over a 0.1 second duration using the Precision

Filter Inc. model 28000 signal conditioning system.

The mass of the fixture, clamps and unpopulated circuit board was measured and the

density of the board specimen was obtained by dividing the average mass of five boards by

the calculated volume from the above dimensions resulting in the lower approximation of

the board’s average density of ρ = 1904 kg/m3. Taking into account the four holes through

which the screws clamped the board to the fixture, as well as the 16 holes for connecting

the wires used to monitor resistor connectivity, the upper end approximation of the density

of the board was calculated to be ρ = 2090 kg/m3. The different acceleration profiles

and calculated density properties were used for the parametric study in the computational

model to quantify the sensitivity of each parameter to the oscillation frequency and strain

amplitude response of the board after impact.

3.2 Experimental Set-Up for Measuring Capacitance Response to Drop Impact

As mentioned earlier in Chapter 2, capacitance can be determined by applying a

square wave charge/discharge pulse to a capacitor through a constant resistance resistor

and measuring the voltage across the capacitor. Therefore, the next two subsections

illustrate the experimental set-up and procedures for measuring capacitance changes during

and immediately after the drop shock event, which will later be used to validate the

computational sub-model of electromechanical capacitance response of high and low

voltage capacitors.

3.2.1 High Voltage Capacitance Measurements.

The high voltage ferroelectric dielectric capacitors chosen for this study were AVX

Corporation Class II MLCC based on Barium Titanate ceramic dielectric with X7R

temperature profiles. The X7R characteristic implies relatively low variance of capacitance

with temperature, even though external temperature was not varied during the experiment,

and thus, was not a factor in the variations in capacitance. The high voltage floating
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electrode capacitors, shown in Figure 2.2, were rated to 3,000 VDC and 470 pF +/-10% in

capacitance. The nominal size of devices was 4.5 mm × 3.2 mm × 1.54 mm (size 1812)

with each component weighing 0.12 grams.

The board electrical layout supported up to four 1812 size high-voltage capacitors

surface mounted symmetrically about the center of the PCB. The top surface of masked

copper stations C5, C6, C7 and C8 allowed up to four connections per station, as seen

in Figure 3.3. Capacitors were surface mounted on the PCB with the Exmore VS-500

Figure 3.3: Printed Circuit Board Electrical Layout

Vapor Soldering re-flow oven, shown in Figure 3.4, according to AVX surface mounting

guide temperature profile [54] using the Sn63Pb37 Kester Manufacturer solder paste. The

solder paste was applied to the PCB copper pads by the Mann Corp SP5500 Dual Squeegee

Stencil Pencil, shown in Figure 3.5.

Once the boards were populated with capacitors, drop impact tests commenced

using the same drop tower employed during PCB dynamics investigations described in

Section 3.1. Initial mechanical shock impulse duration during each run was on the

order of 100 - 250 µs with peak acceleration amplitudes ranging between 500 - 24,000

g depending on the drop height. The charge/discharge square pulse was generated by

waveform generators at a frequency of 100 KHz during the drop resulting in approximately

10 - 25 capacitance measurements throughout the duration of the initial shock impulse.
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Capacitance was later calculated using least squares fit of an exponential function to

the voltage versus time curve using the relationships described in Equation (2.9) and

Equation (2.10).

Figure 3.4: Exmore VS-5000 Vapor Soldering Re-flow Oven

The master square wave charge/discharge signal was provided by the Standard

Research Systems DS345 Synthesized Function Generator using a 5 VDC peak to peak

pulse with zero offset. The pulse was routed through the off-board, unstressed, capacitor

via the shorted C8 station on the PCB and a 464 Ω resistor in order to compare the changes

in capacitance between stressed and unstressed components. The slave charge/discharge

signal was supplied through a separate 464 Ω resistor by the Agilent 33220A Arbitrary

Waveform Generator using the 5 VDC peak to peak square wave through the stressed

capacitor mounted on station C5. TDSK5104B Digital Phosphor Oscilloscope was used

to monitor and record voltage across the stressed capacitor on Channel 3 and unstressed

capacitor on Channel 4. The original slave and master square pulses were simultaneously
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monitored on Channels 1 and 2 respectively. All channels were set to the high impedance

value of 1 MΩ in order to accommodate the oscilloscope’s maximum possible root mean

square limits, while simultaneously stressing the capacitors with the highest possible

potential during the drop impacts.

Figure 3.5: SP5500 Dual Squeegee Stencil Pencil

Voltage across the mechanically stressed capacitor was measured and recorded to

observe the direct effects of the mechanical shock on the capacitance, while voltage

across unstressed, off-board, capacitor was measured for comparison in order to detect

any capacitance changes due to cable whip, and inherent capacitance in the cabling and

the board. The slave and master pulse generators were synchronized, and the square

wave pulses were routed through the same 20 feet of commercial grade general purpose

22 AWG 4 conductor plenum shielded cable. The stressed capacitor on C5 station was

connected using +red, -black convention and the short on C8 PCB station with off-board

capacitor used +green, -white coding. For certain drops, a Vishay foil strain gage was

fixed to the bottom surface of the PCB to measure the lengthwise (x-direction) uniaxial

strain response of the board during the impact in order to quantify the board dynamics.
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However, all the experimental runs used an Endevco 7270A-60K accelerometer mounted

directly on the fixture to measure impact acceleration in the vertical direction (z-direction).

The accelerometer signal was routed through the Auxiliary channel on the oscilloscope to

trigger recording of capacitance data on all four channels with a 15% delay, as soon as

the accelerometer voltage reached a preset value of 140mV, equivalent to 280 g. National

Instruments Chassis supplied constant current for the strain gage and constant voltage for

the accelerometer with Precision Filters 28000 providing initial signal processing as part of

the impact data acquisition system. The wiring schematic for the strain, acceleration and

capacitance data acquisition system is shown in Figure 3.6.

Figure 3.6: Data Acquisition Schematic

Acceleration and strain data were recorded at a sample rate of 25 MS/s (25 MHz)

for a total duration of 100 ms, while the voltage across both stressed and unstressed

capacitors, as well as the original slave and master signals was collected at a sample
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rate of 50 MS/s (50 MHz) for a total duration of 10 ms. With the 100 KHz wave pulse

frequency, approximately 250 voltage data points were available for the least squares fit to

an exponential function in order to determine the RC time constant using Matlab. However,

for more accurate least squares fit calculations, only voltages within 12% of peak values

were used for curve fitting.

Drop tests were carried out from twelve distinct drop heights using three different PCB

mounting configurations for a total of 60 impacts. The drop heights ranged from 6 inches

to 72 inches, equivalent to 2.2 m/s and 12.8 m/s change in velocity, or peak acceleration

amplitudes varying from 666 g to 23,961 g respectively. Printed circuit boards were

assembled and affixed to the fixture using three different configurations. In Configuration

A1, shown in Figure 3.7, PCB was caul clamped, allowing the board to flex after impact

with capacitors mounted on stations C5, C6 and C7. Capacitance was monitored on

station C5 and a short was soldered on C8 station for off-board capacitance measurements.

Configuration A2, shown in Figure 3.8, utilized steel clamps, and thus dynamic capacitance

was not monitored in real time, but featured capacitors on all four stations. Configuration B

was an identical electrical setup as configuration A1, but the mechanical mounting scheme

was modified with the board being affixed directly on the flat steel surface of the fixture

preventing the board from flexing post impact, as seen in Figure 3.9. Unlike the acceleration

profiles, strain data, capacitance measurements and high speed video were not all collected

during each drop. Therefore, test matrix in Table 3.1 correlates the drop configuration,

drop height and the corresponding change in velocity, as integrated using the trapezoidal

rule, with the collected data. As discussed earlier, accelerometer data was required for

every drop in order to quantify the acceleration profile, however, during drops 3 and 9,

acceleration data was not recorded, and thus these tests are not included in the analysis, or

the matrix.
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Figure 3.7: Flexing Board Configuration A1 w/ Caul Clamps

Figure 3.8: Flexing Board Configuration A2 w/ Steel Clamps

Table 3.1: High Voltage Capacitance Test Matrix (X indicates data collected)

Test # Configuration Height (in) dV (m/s) Strain Capacitance
1 – 12 3.934 X –
2 – 18 4.517 X –
4 – 24 2.886 X –
5 – 30 5.587 X –
6 – 36 6.202 X –

Continued on next page
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Table 3.1 – continued from previous page
Test # Configuration Height (in) dV (m/s) Strain Capacitance

7 – 36 6.074 X –
8 – 36 4.857 X –
10 A2 17.25 4.762 – –
11 A2 23.25 5.877 – –
12 A2 29.25 4.731 – –
13 A2 35.25 6.177 – –
14 A2 42.25 7.636 – –
15 A1 18 3.336 – X
16 A1 36 6.082 – X
17 A1 36 6.141 – X
18 A1 36 6.271 – X
19 A1 36 6.803 – X
20 A1 36 5.966 – X
21 A1 36 6.307 – X
22 A1 36 6.382 – X
23 A1 36 6.942 – X
24 A1 36 6.382 – X
25 A1 36 7.758 – –
26 A1 36 7.955 – –
27 A1 12 2.307 X X
28 A1 36 6.782 X X
29 A1 36 5.847 X X
30 A1 36 5.912 X X
31 A1 36 7.404 X X
32 A1 36 6.134 X X
33 A1 36 7.505 – X
34 A1 36 7.234 – X
35 A1 36 7.676 – X
36 A1 36 5.878 – X
37 B 18 2.887 – X
38 B 24 3.493 – X
39 B 30 6.046 – X
40 B 36 5.651 – X
41 B 42 8.416 – X
42 B 48 8.536 – X
43 B 48 7.247 – X
44 A2 36 8.638 – –
45 A2 30 5.547 – –
46 A2 24 5.499 – –
47 A2 18 4.468 – –
48 A2 12 2.699 – –

Continued on next page
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Table 3.1 – continued from previous page
Test # Configuration Height (in) dV (m/s) Strain Capacitance

49 A2 6 2.162 – –
50 A2 6 2.182 – –
51 A2 12 3.716 – –
52 A2 18 5.204 – –
53 A2 24 6.180 – –
54 A2 30 5.998 – –
55 A2 36 7.429 – –
56 B 54 10.027 – X
57 B 60 11.392 – X
58 B 66 11.283 – X
59 B 72 12.850 – X
60 B 72 12.797 – X

3.2.2 Low Voltage Capacitance Measurements.

The low voltage component capacitance was measured using similar methodology

employed to experimentally investigate capacitance response of the high voltage capacitors.

However, due to differences in physical size of components and their electrical properties,

especially the capacitance value, modifications to experimental parameters had to be made,

in order to collect electromechanical response at the highest possible data rate, and ensure

sufficiently high information resolution to fully observe the capacitance change effects

during impact. This section describes the differences in techniques that were necessary

as a result of changes in capacitor performance parameters.

The low voltage ferroelectric dielectric capacitors were also Class II MLCC based

on Barium Titanate ceramic dielectric with X7R temperature profiles manufactured by

the AVX Corporation. However, the low voltage floating electrode capacitors, shown in

Figure 2.2, were rated to 10 VDC and 2,200 pF +/-20% in capacitance. The nominal

size of devices reduced to 3.2 mm × 2.5 mm × 0.8 mm (size 1210) and due to the

smaller dimensions of the surface mounted components, PCB layout also changed slightly

by moving copper pads closer together to accommodate the new devices. However, the
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Figure 3.9: Non-flexing Board Configuration B

electrical layout of traces remained unchanged from the board housing the 3,000 VDC

capacitors.

Due to the more than quadrupling of the capacitance value from 470 pF to 2,200 pF,

which increased the RC time constant by over four times, reducing the resistance value by

the same amount would have been ideal in order to maintain the same charge/discharge

pulse frequency as for the high voltage capacitors. However, electrical feedback problems

with the function generators required an even higher impedance in the RC circuit, and

thus the resistor value was increased to 1 KΩ. The combined ten-fold increase in the RC

time constant required a reduction in pulse frequency to 50 KHz, which ensured enough

charging/discharging time to accurately estimate the capacitance using the least squares fit

in Matlab and that the pulse occurred frequently enough to accurately capture capacitance

response during the short period of the shock event.

Also, in order to avoid polarization switching, during the charge/discharge cycle,

the 10 VDC capacitors were exposed to the +/- 4 VDC amplitude pulse, offset by

+5 VDC. Thus, the voltage varied between +1 and +9 VDC for the low voltage
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capacitor measurements, exercising the capacitor through 80% of its rated value. However,

the fundamental data acquisition technique for the acceleration, strain and capacitance

remained the same, as shown in Figure 3.6.

The board test configurations for the low voltage capacitors were identical to the

high voltage device experiments, but only configurations A1 and B, shown respectively

in Figure 3.7 and Figure 3.9, were used for the 10 VDC capacitors. Unfortunately, toward

the end of the drop tower experiments the insulation around the accelerometer wire wore

off, feeding partially erroneous data. Thus, the low voltage capacitance measurement test

matrix in Table 3.2 includes the column indicating if the accelerometer data was collected.

Only 43 drops of the 10 VDC devices were accomplished and the 12 inch height impacts did

not always produce enough acceleration to trigger the data acquisition system, explaining

the more sporadic acquisition of accelerometer and capacitance data in Table 3.2.

Table 3.2: Low Voltage Capacitance Test Matrix (X indicates data collected)

Test # Configuration Height (in) Acceleration Strain Capacitance
1 – 36 X X –
2 – 30 X X –
3 – 24 X X –
4 – 18 X X –
5 – 12 X X –
6 – 12 X X –
7 – 18 X X –
8 – 24 X X –
9 – 30 X X –
10 – 36 X X –
11 – 42 X X –
12 – 48 X X –
13 – 54 X X –
14 – 60 X X –
15 A1 12 – – –
16 A1 18 X – X
17 A1 24 X – X
18 A1 30 X – X
19 A1 36 X – X

Continued on next page

70



Table 3.2 – continued from previous page
Test # Configuration Height (in) Acceleration Strain Capacitance

20 B 72 X – X
21 B 66 X – X
22 B 60 X – X
23 B 54 X – X
24 B 48 X – X
25 B 42 X – X
26 B 36 X – X
27 B 30 X – X
28 B 24 X – X
29 B 18 X – X
30 B 12 – – –
31 B 72 X – X
32 B 36 X – X
33 B 12 X – X
34 A1 42 – – –
35 A1 48 – – –
36 A1 54 – – –
37 A1 12 – – –
38 A1 18 – – –
39 A1 24 – – –
40 A1 30 – – –
41 A1 36 – – –
42 A1 42 X – X
43 A1 48 X – X

Least squares fit capacitance calculations in Matlab used identical functions as for the

3,000 VDC devices, but with changes in the values of the charge/discharge pulse frequency,

amplitude, capacitance and resistance, in order to ensure accurate calculation of the new

RC time constant.

3.2.3 Static Capacitance Measurements of Shocked Devices.

Once the capacitors were shocked with the drop tower in the laboratory, the high

voltage devices were dismounted from the circuit board and their capacitance was measured

using an impedance analyzer located at RXSA branch of the Materials and Manufacturing

Directorate of AFRL on Wright-Patterson AFB. Static capacitance measurements were
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performed in order to verify any permanent changes in capacitance as a result of the impact,

and to investigate capacitance sensitivity to different frequencies.

Shocked components were dismounted according to AVX corporation mounting guide

instructions [54] using the 33 watt MEISEI Corp HOT Tweezers with tip temperature of

210 degrees Celsius as measured by an HH611A thermometer. Capacitance and dissipation

factor of the shocked, and control capacitors were measured at discrete frequencies of

100 Hz, 1 KHz, 10 KHz, 100 KHz and 1 MHz at +/-1 Volt oscillation level using an HP

4192 LF Impedance Analyzer with the HP 16048C test leads, and custom built, spring

loaded test fixture, shown in Figure 3.10. Calibration of the impedance analyzer was

performed after every change of frequency for shorted and open fixture configurations to

ensure accuracy of the measurements.

Figure 3.10: Static Capacitance and Dissipation Factor Measurement Set-up
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3.3 Material Characterization Using the Scanning Electron Microscope

Material composition of the dielectric material according to AVX, consisted up to

90% - 98% of Barium Titanate [24]. However, in order to verify the manufacturer’s

statement regarding the dielectric, to discover the chemical composition of the electrodes

and terminals, as well as to measure the dimensions of the internal electrode structure for

the sub-model, brand new high and low voltage capacitors were dissected and imaged using

SEM with Energy Dispersive Spectroscopy (EDS) capabilities located at the Materials

Characterization Facility (MCF) of Materials and Manufacturing Directorate of AFRL

on Wright-Patterson AFB. Also, selected capacitors that failed during the drop impact,

but, which were recovered after the experiments, were imaged in order to locate the exact

material failure point to better understand the mechanical failure mechanisms of surface

mounted devices.

Dropped components that were recovered post impact, as well as some surviving

capacitors, were set along with the printed circuit board in CaldoFix 2 Hardener Resin

using 25/7 resin/hardener ratio by weight, and baked for 17 hours in a 50 degree C oven.

Once individual specimens were cured, diamond tipped circular saws were used to bisect

and remount the test articles in the same epoxy with surfaces of interest orientated in a

single planar layout inside a 2-inch diameter cup. The common surface was prepared using

the 320, 600, 800 and 1200 grit round Silica Carbide circular disk sandpaper and coated

with carbon for increased conductivity. The surface was also shorted using copper tape and

silver paint to the aluminum mount in preparation for the SEM, as seen in Figure 3.11.

A total of 16 specimens set inside the 2-inch diameter puck, comprising 3,000 and 10

VDC capacitors along with dissected portions of the circuit board were imaged using FEI

Quanta 600F Scanning Electron Microscope, shown in Figure 3.12. Devices were imaged

using the 15 keV energy beam and a back-scatter tip at 57× to 2,500×magnification levels,

depending on the specific region of interest, in order to measure dimensions of capacitors,
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as well as to detect any mechanical abnormalities. Chemical composition was obtained

via Energy Dispersive Spectroscopy using EDAX detectors for the dielectric, electrodes,

terminals, solder, pads and the printed circuit board materials.

Figure 3.11: Test Articles Assembled in a Single Puck and Prepared for SEM Imaging

Figure 3.12: FEI Quanta 600F Scanning Electron Microscope

Once all the experimental data was gathered, including strain response of printed

circuit board, dynamic and static capacitance measurements of high and low voltage
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capacitors, and material composition of capacitors along with the structural layout of

electrodes, the next step was to model board dynamics, and to conduct a computational

parametric study to investigate sensitivity of the board strain response to various material

properties in both frequency and amplitude. After the dynamic response of the board is

computationally modeled, the final phase of the study was to create an accurate capacitor

model in an RC circuit, apply realistic acceleration profile for both flexing and non-flexing

board configurations and to determine if purely piezoelectric response can evoke the same

electromechanical capacitance response of devices undergoing drop impacts, as observed

in the laboratory.

3.4 Computational Model of PCB Dynamic Response

The computational model of the dynamic board response, was constructed using a

1/4 symmetry section of the fixture, clamps and the PCB in the Lagrangian frame of

reference, as shown in Figure 3.13. The full test apparatus was drafted and meshed using

the CUBIT version 13.2 geometry generating software available as part of the package in

ALEGRA-EMMA version 5.0.

Figure 3.13: 1/4 Symmetry Computational Model for Dynamic PCB Response Validation
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The entire model was implemented under Solid Dynamics physics section of

ALEGRA and was meshed using a total of 23,832 hexagonal elements with the central,

flexing, part of the circuit board being meshed with the smallest elements, comprising

cubes with sides of 0.3048 mm. The material specifications for the clamps and fixture

were based on SNL material library for 4340 Stainless Steel. The PCB was modeled using

the generic equation of state with a linear elastic constitutive relationship, which required

input parameters for Young’s modulus, density, material speed of sound, temperature and

constant volume heat capacity.

The Poisson’s ratios of 0.177 and 0.171, as well as Young’s moduli of 25.814 GPa and

21.9115 GPa were obtained form the manufacturer’s specifications data sheet for direction

along the fiber grain and in the fill direction respectively [55]. The constant volume heat

capacity, Cv = 3.013 kJ/K, was chosen based on the comparative PMMA material and the

temperature input was the room temperature of the laboratory, T = 298 K. The speed of

sound Cs, was calculated using the relationship between density ρ, and bulk modulus Kbulk,

in Equation (3.1), where the bulk modulus is given by the relationship between the Young’s

modulus E, and the Poisson’s ratio ν, in Equation (3.2).

Cs =

√
Kbulk

ρ
(3.1)

Kbulk =
E

3(1 − 2ν)
(3.2)

In the explicit finite element methods simulations are conditionally stable. Thus, the

constant critical time step of tcrit = 38 ns, was calculated according to the relationship

in Equation (3.3), where h is the size of the smallest element.

tcrit ≤
h

Cs
(3.3)

In the laboratory, black insulation tape was used to prevent surface traces in the PCB

from shorting the connections, and thus the exact type of interfaces between the board and

76



the stainless steel components were difficult to recreate. Therefore, the clamp/board and

board/fixture interfaces were modeled using frictionless and tied contacts, as well as by

varying the coefficient of friction µ = 0.5 and 0.3, to demonstrate that the effect of the

type of contact surface on the dynamic board response was minimal. Also, the screws

holding the clamps were not simulated because they would have minimal effect on the

board dynamic response.

The accelerometer mounted on the top central portion of the fixture measured the

acceleration only in the z-direction at this particular surface. However, the nodes, which

were assigned the measured acceleration profile boundary conditions in the computational

model were varied between the surface on which the accelerometer was mounted and the

nodes in the entire fixture, in order to reduce undesired flexing of the stainless steel fixture.

The unfiltered acceleration profile was used directly as the input boundary condition for

the computational model and was also integrated to calculate the total change in velocity,

which was later applied as a half-sine wave acceleration profile to investigate dynamic

board strain response. Finally, another set of Young’s modulus and the corresponding

linearly extrapolated Poisson’s ratio (17 GPa and 0.165 respectively) along with a lower

board density of ρ = 1800 kg/m3 was introduced in order to investigate the sensitivity of the

dynamic board response to these parameters. The finite element model was parametrized

using 36 runs according to the matrix in Table 3.3.

Table 3.3: Dynamic PCB Model Computational Parameter Matrix

Young’s Modulus (GPa) Density (kg/m3) Contact Type Acceleration
/ Poisson’s Ratio (friction coefficient) type

Run 25.8140 21.9115 17.0000 2090 1904 1800 Tied 0.5 0.3 0.0 Fixture Fixture
/ 0.177 / 0.171 / 0.165 Surface Body

1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X
6 X X X X

Continued on next page
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Table 3.3 – continued from previous page
Young’s Modulus (GPa) Density (kg/m3) Contact Type Acceleration

/ Poisson’s Ratio (friction coefficient) type
Run 25.8140 21.9115 17.0000 2090 1904 1800 Tied 0.5 0.3 0.0 Fixture Fixture

/ 0.177 / 0.171 / 0.165 Surface Body
7 X X X X
8 X X X X
9 X X X X

10 X X X X
11 X X X X
12 X X X X
13 X X X X
14 X X X X
15 X X X X
16 X X X X
17 X X X X
18 X X X X
19 X X X X
20 X X X X
21 X X X X
22 X X X X
23 X X X X
24 X X X X
25 X X X X
26 X X X X
27 X X X X
28 X X X X
29 X X X X
30 X X X X
31 X X X X
32 X X X X
33 X X X X
34 X X X X
35 X X X X
36 X X X X

For each run, a Lagrangian tracer was inserted inside the center-most element on the

top surface of the circuit board to obtain the uniaxial, x-direction, strain results comparable

to the strain gage data collected in the laboratory. However, the computational strain was

collected at a slightly higher rate of every 380 ns (2.67 MHz) for a total of 1 millisecond.

The dominant frequency response, as well as the peak strain amplitude were calculated

using Fast Fourier Transforms (FFT) and compared to the strain data obtained in the
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laboratory. All simulations were conducted in parallel over 8 cores on the local computer,

or over 16 cores using the Air Force Institute of Technology (AFIT) Nordic Linux cluster,

requiring four hours of wall time to complete each run.

Once the dynamic board response sensitivity study was completed and the strain

oscillation frequency, and amplitude calculated by the computational model correlating

to the respective acceleration profile closely matched the same experimentally measured

parameters, appropriate boundary conditions to simulate stresses on the capacitor itself

were obtained at the exact surface locations where the components were mounted. These

acceleration profiles, obtained using the parametrized dynamic model of the PCB at the

precise locations where the capacitors were soldered on the board, were used to apply

realistic boundary conditions to the capacitor sub-model for the flexing board case. The

next section describes the computational model designed to simulate and predict the

electromechanical response of capacitors previously measured in the laboratory for both

flexing board configuration A1, and for the non-flexing board configuration B.

3.5 Computational Model of Capacitor Electromechanical Response

As mentioned earlier, the final objective of this study involved the development of the

computational piezoelectric model of an MLCC for simulating the capacitance response to

high-g drop impact. This objective was accomplished first, by structurally sub-modeling

the capacitor in ALEGRA-EMMA using the same electrode layout design as obtained

from SEM imagery using techniques described in Section 3.3. Then, the RC circuit

with the identical charge/discharge pulse described in Section 3.2 was computationally

simulated to ensure that components were electrically stressed in the same manner as

during the experiments. Finally, the capacitor sub-model was mechanically stressed

using the appropriate acceleration boundary conditions for both the flexing and non-

flexing board cases. The goal of the implementation of methodologies in this section

was to accurately predict the capacitance response measured in the laboratory using a
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computational piezoelectric model with input parameters determined from a combination

of literature review, experimental data and previously developed board dynamics model.

3.5.1 Capacitor Sub-model Development.

In order to create a structurally accurate model of the MLCC, dimensions of the

electrodes and their positions within the dielectric material were measured using the SEM.

The high voltage capacitor drop tests did not produce any electromechanical response

during the impact due to the fact that components were not charged to high enough potential

with the square wave pulse, which supplied only 0.33% of their rated voltage. Thus,

only the low voltage capacitors that were charged through 80% of their rated voltage were

modeled and investigated for their electromechanical response. The SEM image of the low

voltage capacitor and the electrode layout structure of the device are shown in Figure 3.14.

Figure 3.14: SEM Image of the 10 VDC XZ-Plane Cut Surface and Electrode Layout

Schematic (not to scale)

In ALEGRA-EMMA, the dielectric material was modeled as a parallelepiped and the

electrodes were represented by the designated surfaces of equal potential, called sidesets,
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where volumes that make up the dielectric meet. Thus, the dielectric material was sectioned

using blocks with dimensions that would allow for accurate size and layout assignment of

the electrodes, as well as the overlap of the terminal and copper pad surfaces for applied

boundary conditions. The assembled volumes representing the dielectric material, and the

sidesets assigned to the electrodes, terminals and boundary conditions where mechanical

stress is applied are shown in Figure 3.15 and Figure 3.16 respectively.

Figure 3.15: Low Voltage Capacitor Dielectric Volume Sections

The smallest and most critical dimension in the electrode structure, which is the

distance in the z-direction between the floating, and the terminal-connected electrodes, was

measured with the SEM to be 70.84 +/-0.5 µm. The required simulation time according to

the experimental results needed to be no less than 2.5 milliseconds in order to fully capture

the capacitance changes after the impact. However, in order to keep a reasonably stable

time step that is not smaller than two nanoseconds, which would allow for the simulation

to run long enough to capture the electromechanical response, the entire model was meshed

using a grid containing elements no smaller than 20 µm according to Equation (3.3). Thus,
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Figure 3.16: Electrodes, Terminals and Boundary Condition Surfaces

the dielectric parallelepiped was divided with volumes generated to within 10 µm accuracy,

which is an error of no more than 1.89% from the measured electrode layout dimensions.

The dielectric material was gridded using two similar types of meshes, but each

having different element sizes, as seen in Table 3.4. The coarse mesh (C-mesh), shown in

Figure 3.17, used 50 µm hexagonal elements which spanned the critical dimension between

connected and floating electrodes in a single element. The fine mesh (F-mesh), shown in

Figure 3.18, used 20 µm elements allowing for three elements to represent the critical

distance. However, as will be discussed in the next chapter, the solution accuracy for the

capacitance changes between the two different meshes was relatively small. Also, only two

simulations would have been possible based on the 670,000 Central Processing Unit (CPU)

hours on the Garnet High Performance Computer (HPC) that were provided for this work.

Therefore, most simulations to investigate the electromechanical response of capacitors

were conducted using the coarse mesh.

The genesis (.gen) file containing the mesh and all the sidesets of the material being

modeled in ALEGRA-EMMA, was generated using CUBIT, just as in the case of the

dynamic PCB response model. The size of the .gen file is important, because the output
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(.exo) file size of ALEGRA for specified variables in the input (.inp) file is directly tied to

the number of elements or nodes that represent field values. Thus, the larger the .gen file,

the larger the output, necessitating huge amounts of memory, on the order of Tera-bites.

Therefore, limitations with AFIT Linux network, which provided for no more than 250 GB

of back-up space, was another reason to use the coarse mesh.

Figure 3.17: Coarse Mesh

Figure 3.18: Fine Mesh
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Table 3.4: The MLCC Mesh Parameters

C Mesh F Mesh

Number of elements 43,904 769,500

Element size 50 µm 20 µm

.gen file size 3.33 MB 50.36 MB

Stable time step 4 ns 1.75 ns

Total number of runs 30 2

3.5.2 Computational RC Circuit Implementation.

Once an accurate MLCC model was created and appropriately meshed in CUBIT,

it was inserted into the computational RC circuit, which accurately replicated the

experimental set-up described in Section 3.2. The computational circuit consisted of a total

of 15 circuit nodes, including 13 sidesets of the capacitor electrodes and terminals specified

in CUBIT. The computational RC circuit also employed two elements, one representing the

extremely small amount of inductance in the pulse transmission wire, and another imitating

the 1 kΩ resistor in series with the MLCC model, as can be seen in Figure 3.19.

At any point in the simulation the voltage across the capacitor was obtained by

calculating the potential difference between nodes 1 and 10. However, because node 1 was

constantly grounded, only voltage at node 10 represented the potential difference across the

capacitor. The square wave voltage input at node 15 simulated the charge/discharge pulse of

+1 to +9 Volts at 50,000 Hz frequency, replicating the function generators in the laboratory

to within a 10 nanosecond accuracy. The 3.21 µHenry inductor simulated the inductance of

the 20 feet of parallel wire separated by 2 mm, which represented appropriate inductance of

the cable carrying the charge/discharge pulse in the experiment. Inductance of capacitors

themselves used in this study becomes significant at frequencies over 4 MHz according
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to the manufacturer, and thus was considered negligible during the dynamic capacitance

measurements, making it unnecessary to replicate in the computational model.

Figure 3.19: RC Circuit Model in ALEGRA-EMMA

However, a small amount of resistance within the electrodes and terminals, 0.01834 Ω,

was calculated using equation R = (ρl)/A, where resistivity of Nickel is given by ρ =

69.9 nΩ m, A is the approximate cross-sectional area of the electrodes and l is the length

of the conductor. The relative and absolute error tolerances of the circuit solver to conduct

the convergence test for divided difference of solution accuracy was set to within 1e−5.

Since the smallest input voltage value was 1 Volt, the solver error tolerances set to 5 orders

of magnitude lower than the input into the model were sufficiently small for an accurate

solution of the piezoelectric response of the capacitor under shock.

3.5.3 Input Parameters and Data Processing.

As mentioned earlier, piezoelectric material model was used for the dielectric in order

to quantify the electromechanical response of the capacitor. In ferroelectric ceramics,

due to planar isotropy imposed by the electric field when potential is applied, only

certain elastic, piezoelectric and permittivity moduli components need to be specified to

capture the material behavior under stress. In fact, Equation (3.4), Equation (3.5) and

Equation (3.6) highlight the ten required elastic, piezoelectric and permittivity values
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necessary to investigate electromechanical response of the material.

[Cg] =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2 (C11 −C12)



(3.4)

[eg] =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 (3.5)

[K g] =


ε1 0 0

0 ε1 0

0 0 ε3

 (3.6)

The nominal value for the elastic, piezoelectric and permittivity constants for Barium

Titanate ceramics that were applied to the Piezoelectric model were obtained from literature

and are outlined in Table 3.5 [11]. While elasticity and piezoelectric moduli were readily

specified, the two permittivity constants first had to be calculated using the relationship

between the coupling factor k, constant electric field compliance s, and the converse effect

piezoelectric constant d, as seen in Equation (3.7) and Equation (3.8) below.

ε1 =

(
d15

k15

)2

/ sE
44 (3.7)

ε3 =

(
d31

k31

)2

/ sE
11 (3.8)
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Table 3.5: Elastic, Piezoelectric and Permittivity Moduli Constants [11]

Constant Barium Titanate Ceramic Value

C11 (N/m2) 166×109

C12 ” 76.6×109

C13 ” 77.5×109

C33 ” 162×109

C44 ” 42.9×109

e15 (C/m2) 11.6

e31 ” -4.4

e33 ” 18.6

ε1 (F/m) 13.81×10−9

ε3 ” 16.81×10−9

Ideally, experimental measurements of the above ten constants for the exact Barium

Titanate based dielectric material used inside the capacitors that were stressed would

be used for the computational model. However, while the procedures for obtaining

permittivity, elasticity and piezoelectric moduli constants have been clearly outlined in

the literature and have been published by the Institute of Electrical and Electronics

Engineers (IEEE) [56], the technique used to investigate material properties of ferroelectric

materials requires an elaborate experimental set-up, specialized laboratory equipment and

specifically unique dimensions of the material specimen, none of which were available for

this study. Thus, the values available in literature for the Barium Titanate ceramic, that were

outlined in Table 3.5, were used to obtain piezoelectric response of the dielectric material,

and only rudimentary parametric study was performed in order to validate computational

model sensitivity to the varied moduli by significantly and systematically changing elastic,

piezoelectric and permittivity constants’ values, and exploring their effect on the solution.
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Boundary conditions for the capacitor sub-model were specified by applying the

acceleration profiles based on the board dynamics. In the case of a flexing PCB, A1

configuration, board dynamics simulations outlined in Section 3.4 were first conducted

to obtain the x, y and z-direction acceleration profiles at the center of the surface of the

pad/capacitor interfaces, and then applied to the entire capacitor sub-model surface, where

the copper pad is in contact with the terminal through solder, as shown in Figure 3.16.

However, in the case of the board that was mounted directly on the flat fixture surface,

non-flexing B configuration, x and y-direction accelerations were negligible. Thus, the

z-direction accelerometer profile measured during the drop was applied directly to the

pad/capacitor terminal interface surface. In the non-flexing, B configuration, both filtered

and non-filtered accelerometer data was used for boundary conditions. However, it

was quickly determined, that using filtered or half-sine boundary conditions replicating

the change in velocity experienced by the capacitor during the drop impact did not

produce electromechanical effects that were observed during the experiment. Thus, for

investigations of piezoelectric response, raw and unfiltered accelerometer data was used

for all the boundary conditions of the non-flexing board configuration drops, and also

as boundary condition in the board dynamics computations to obtain the triaxial surface

acceleration profiles for the flexing board case.

Piezoelectric response simulations were ran for 4 milliseconds for the flexing board

configuration in order to attempt to capture at least a few periods of board flexure after the

impact and 2.5 milliseconds in the non-flexing board case, in order to capture the entire

electromechanical response observed in the laboratory, while still attempting to conserve

computational power allocated on Garnet HPC. The field variable plot was emitted every

10 µs and the electric field, potential, permittivity and pressure variables, along with

voltages at each node, were written every 1 µs second. A total of 990 tracers were inserted

into the dielectric region occupied by the electrodes to obtain quantitative data used later
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to determine capacitance of the modeled MLCC. However, due to the overwhelmingly

uniaxial board strain, at least in the flexing board case, pressure and premittivity changes in

the y-direction were negligible requiring only three columns of tracers. Therefore, 30 rows

in the x-direction, 3 columns in the y-direction and 11 levels of tracers in the z-direction,

shown in Figure 3.20, were used to obtain the critical z-direction permittivity.

Figure 3.20: Layout of Tracers in the Capacitor

The permittivity changes during and after the shock were obtained from each tracer

using hisread.py function of ALEGRA-EMMA. The computationally obtained permittivity

data was processed in Matlab in order to calculate the change in capacitance of the device

for both flexing and non-flexing board configurations, which in turn was plotted against

the experimentally obtained data for comparison. From comparison between experimental

capacitance measurements and computationally calculated electromechanical response,

constitutive relationships for capacitance changes under dynamic high-g mechanical loads

were developed.
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3.6 Uncertainty Analysis

As with any value measured in the laboratory, an estimate of error must be supplied

in order to determine if the equipment or numerical model used in the study provided

enough resolution to capture the types of effects being investigated. One of the sources

of error with the RC capacitance calculation technique, was due to the resolution of the

voltage that was measured by the oscilloscope at high data rate. The accuracy of the

voltage measurements obtained during the drop tower experiments was within +/-0.1 Volts,

translating into capacitance calculation uncertainty of less than 0.5 pF. Based on the voltage

error propagated through the least squares fit function in order to determine the capacitance

value of the devices undergoing impact, the standard deviation of the RC measurement

method was calculated to be 18.3 pF, which is less than one half of one percent of the

nominal value for the 10 VDC capacitors and two percent for the 3,000 VDC components.

The combined accuracy of less than 1% of the RC measurement technique was sufficient

to detect the transient capacitance variations as a result of the impact shock.

Another source of error, was encountered during the static capacitance measurements.

The impedance analyzer error was based on the frequency at which the capacitance was

measured, and ranged in value between +/-0.1 pF at 1 MHz and +/-100 pF at 10 Hz. Similar

frequency-based order of magnitude differences in error were present during the dissipation

factor determination, which was conducted concurrently with the capacitance values using

the impedance analyzer. However, because the impedance analyzer was utilized to measure

static variations in capacitance of the mechanically failed components, the less than +/-5 pF

accuracy of the impedance analyzer was sufficient enough starting at frequencies above

100 Hz.

As previously mentioned, the SEM measurements of the dimensions of the physical

layout of the electrodes were within +/-0.5 µm. Additionally, due to the finite element

discretization, the simulated electrode layout error was increased to 20 µm with the
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coarse mesh, which translated to a 31% error based on the numerical RC measurement,

where the computationally predicted capacitance of the device sub-model was 1,470 pF,

instead of 2,200 pF measured in the laboratory. However, the uncertainty in the Barium

Titanate dielectric permittivity values was easily capable of offsetting the physical layout

discretization error. Therefore, because the focus of this study was to experimentally

measure and numerically predict the piezoelectrically induced variations in capacitance, the

same order of magnitude differences between the nominal value and the computationally

calculated capacitance of the devices was acceptable. Furthermore, a grid convergence

study was conducted for a single computational run with 20 µm elements, which reduced

the discretization error to within 10 µm, significantly decreasing the discrepancy between

the experimentally measured capacitance variations and the numerical calculations, as

discussed in the next chapter.

Implementation of the methodology discussed in this chapter, illustrated in the

flow chart in Figure 3.21, accomplishes all three objectives outlined in the literature

review. First, dynamic board response of a PCB housing surface mounted components

subjected to drop shocks on the order of 20,000 g is accurately simulated using a newly

developed solid dynamics computational model validated by the experimentally obtained

uniaxial surface strain oscillation frequency and amplitude data. Second, electromechanical

capacitance response of ferroelectric dielectric capacitors is measured in the laboratory

using the RC circuit technique designed to charge and discharge the MLCC, and electrode

structure of the capacitors, as well as the base dielectric material of capacitors is verified

with a scanning electron microscope. Finally, computational sub-model predicting the

piezoelectric response to the conditions explored in dynamic board response investigations,

as well as under non-flexing board conditions, is developed and validated against the

experimentally obtained capacitance data.
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Figure 3.21: Methodology Flow Chart (solid boxes are experimentally obtained data,

dashed boxes are computational models and ovals are research goals)

The end goal of executing the above techniques is to investigate both the mechanical

and electromechanical modes of failure of circuitry utilizing ferroelectric dielectric

capacitors exposed to high-g drop impacts. By developing computational models and

constitutive relationships predicting electromechanical response of capacitors observed

in the laboratory, and detecting mechanical modes of failure, component performance

under harsh conditions may be predicted with greater degree of accuracy. From these

predictions of piezoelectric response of ferroelectric capacitors under harsh mechanical

stresses, circuitry design rules may later be modified to improve survivability of electronic

packages and overall reliability of aerospace technology exposed to high-g impacts.
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IV. Results and Analysis

The execution of the experimental and computational methodologies described in the

previous chapter to accomplish objectives outlined in Chapter 2 resulted in three

distinct phases of research. The first phase focused on developing the computational

model, which accurately simulates dynamic surface strain response of a printed circuit

board undergoing high-g drop tower tests. The first phase of this research was absolutely

necessary, because very few studies exist in the literature that describe board dynamics

under acceleration profiles an order of magnitude greater than in commercially relevant

environments. If board oscillations post impact cannot be accurately predicted, calculating

surface strain on the board at the locations where the capacitors are mounted and

computationally predicting the exact boundary conditions to be applied to the ferroelectric

dielectric sub-model would be extremely difficult. Strain gages would have to be applied

at every pad/terminal interface surface, which would be impractical for different board

trace layouts. Therefore, the first phase proves through a parametric study that using a

simple linear elastic material computational model for the board accurately predicts strain

oscillation frequency and amplitude at the center of the board when compared to the

experimentally measured values. In essence, the first phase experimentally validates the

computational dynamic surface strain response model, from which accurate acceleration

profiles can be obtained and later applied as boundary conditions when calculating

electromechanical response of the ferroelectric ceramic capacitors.

The efforts of the second phase in this research were focused on experimentally

obtaining capacitance response of the capacitors mounted on the flexing PCB, the dynamics

of which have been computationally modeled in phase one, and the non-flexing board,

which was mounted directly on the surface of the stainless steel fixture. For the

flexing board case, measuring capacitance during the high-g drop impact uncovered the
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mechanical mode of failure resulting from an intermittent loss of contact and eventual

complete failure during board oscillations, as well as the electromechanical increase of

capacitance, both directly correlating to the board strain oscillations post-impact. However,

no capacitors mechanically failed during the drop in the non-flexing board configuration,

due to the inherently lower solder joint stresses than in the flexing board scenario, and

only electromechanical failure response was observed in the laboratory. Also, in phase

two of the research, mechanically failed components were recovered and imaged under

the SEM to verify the flexural mode of failure in the flexing board case and also to

verify that the dielectric material is based on the ferroelectric Barium Titanate ceramic

chemical composition. Finally, static capacitance measurements proved that in the case

of the floating electrode capacitors, partial loss of contact between the electrodes and the

terminal leads to a proportional decrease in capacitance even if the component has not yet

completely separated from the PCB.

As pointed out in Chapter 2, a fair amount of computational studies in the literature

have been devoted to the mechanical failure mode of components in the electronics

packages undergoing 3,000 g acceleration profiles. However, no research has been

dedicated to the piezoelectric response of the ferroelectric ceramic dielectric materials

inside capacitors undergoing high-g drop impact. Thus, the third, and final phase of

this research is focused on computationally modeling the electromechanical response of

the structurally accurate MLCC sub-model that uses a high permittivity Barium Titanate

ceramic dielectric in a simple RC circuit, identical to the one that was used to measure

capacitance of components undergoing realistic dynamic flexing and non-flexing high-g

mechanical shocks in the laboratory. Under the flexing board conditions validated during

phase one, the computationally calculated electromechanical response requires a correction

in order to directly correlate to the board surface strain oscillations. However, in the non-

flexing board scenario, due to fewer degrees of freedom and simpler board dynamics,
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computational electromechanical response can be obtained directly from the magnitude of

the change in permittivity constants during and after the shock using a simple constitutive

relationship, developed as a result of this study.

4.1 Phase I: PCB Dynamics Under High-g Drop Impact Stress

Phase I was designed to create a computational model of board dynamic response

under high-g impact, and through a parametric study, validate its predictions against

the strain oscillations measured in the laboratory. However, before developing the

computational PCB model, impact experiments had to be carried out to investigate the

drop tower shock repeatability and predictability, in order to ensure acquisition of proper

boundary conditions that were used to calculate the dynamic response of the board, as well

as the capacitance changes of capacitors, under the high-g mechanical stress. Since the

acceleration profile boundary conditions are highly critical in both the flexing and non-

flexing board capacitance investigations, as they directly relate to the high-g mechanical

stress, it is important to discuss some of the characteristics and limitations of the drop

tower and post processing of the accelerometer data. Thus, the next subsection describes

the correlation between drop height, total change in velocity, and acceleration profiles,

since these parameters are very important when describing the quality of the shock impact.

4.1.1 Drop Tower Characterization and Data Processing Effects.

As mentioned in Chapter 3, variations in peak acceleration, as well as in the shock

profiles during the drop impact test series necessitated the use of accelerometer to measure

exact impact conditions during every drop tower run. Thus, almost 100 accelerometer

profiles were captured during the experimental research phases, ranging between 12 and

72 inches in drop height, from 2.2 to 12.8 m/s in total change in velocity and peak

acceleration levels from 666 g to 23,961 g, as shown in Table 3.1 and Table 3.2. After

the acceleration and strain data was acquired with the Precision Filters signal conditioner,

it was processed in Labview and filtered in Matlab to reduce high frequency data anomalies.
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Both accelerometer and strain gage data were processed using a low pass, 8th order

polynomial, 3 dB frequency and 0.01 Pi radians/sample Butterworth filter. The effects of

data processing and how filtered data compares with raw data during a particular 36−inch

height drop, which is in the center of the drop tower operating envelope and used for the

majority of the drop tower tests in this study, are displayed in Figure 4.1 and Figure 4.2.
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Figure 4.1: Filtering Effects on Accelerometer Data

As can be seen in Figure 4.2, the low pass filter effectively eliminates the strain

gage data outliers without reducing the amplitude of the strain that was measured by

the instrument during and post impact board oscillations. However, in the case of the

accelerometer data, it was impossible to completely filter out the high-frequency response

without significantly reducing the peak amplitude of the shock, or its post impact effects,

as seen in Figure 4.1. Also, while filtering strain data reduced the outliers that are clearly

unphysical, the accelerometer profile contains variations in data that could be explained by

a combination of rigid body translations and high frequency vibrations of the stainless steel
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Figure 4.2: Filtering Effects on Strain Gage Data

material post impact. Thus, while experimentally gathered strain data was always filtered

for comparison with computationally calculated board strain results, acceleration profiles,

whether used for dynamic board response investigations in a computational parametric

study, or for the computational capacitance response measurements, were not filtered, but

applied directly as boundary conditions to the models in their raw, unfiltered form.

Another complicating characteristic of the accelerometer data gathered during drop

tower experiments was the undesired effect of changes in felt programmer material

properties with each run, resulting in a progressively impacted material response. When a

new programmer material inserted between the seismic mass and the anvil is used during

a drop, some of the energy of the shock is dissipated over time to produce a lower peak

acceleration over a longer impact duration, which is called acceleration profile shaping.

However, as the material becomes progressively more impacted with each drop, the same

drop height impact results in a similar total change in velocity magnitude, but with sharper

acceleration profile featuring a significantly increased peak acceleration and a shorter shock
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duration. The effect of impacted felt programmer material was evidenced in the high

voltage capacitor investigations over more than 60 drops, and, to a lesser degree, during

the low voltage capacitor test series of 43 drops, as can be seen respectively in Figure 4.3

and Figure 4.4.
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Figure 4.3: Impacted Programmer Effects During High Voltage Capacitor Tests

The acceleration profiles represented in Figure 4.3 and Figure 4.4 were collected

during four separate 36−inch height drops over two separate test series using similar, but

different 1/8 inch programmers. Over the course of 50 drops of the high voltage capacitors

using the same felt programmer, the peak acceleration grew by half an order of magnitude

(∼85%) throughout the test series, from 6,666 g to 12,340 g, while the change in velocity,

due to shorter impact duration, increased only by 20% from 6.20 m/s to 7.43 m/s, as seen

in Figure 4.3. Similar effects of the impacted programmer felt for different drop heights are

displayed in Table 4.1. While, the change in velocity during a drop from a particular height

did not vary by more than 20%, making it seem appropriate on the surface to describe the
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Figure 4.4: Impacted Programmer Effects During Low Voltage Capacitor Tests

mechanical stress with one value, just by itself, the ∆V metric does not describe the entire

shock event, making it necessary to provide the entire acceleration profile in order to fully

apply the boundary conditions.

The change in acceleration profile during the low voltage capacitor drops was not as

drastic over 32 runs, but the peak acceleration still changed by over 41% from 6,310 g

to 8,897 g for a 36-inch drop, as seen in Figure 4.4. Such significant variations in the

peak accelerations between drops from identical heights provided the most compelling

reason for measuring the acceleration profile during every drop, necessitating the use of

only one particular 36-inch height drop profile as a boundary condition for the dynamic

board response parametric study, as opposed to a weighted average of acceleration profiles

from multiple 36-inch runs. Even more important, as will become clear later in the chapter,

is the application of the appropriate, unfiltered, individual acceleration profile data as a

boundary condition when computationally calculating a particular capacitance response of

devices mounted on both the flexing and non-flexing boards. Since each drop produces an
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inherently unique set of mechanical stresses, as witnessed by the significantly different

individual acceleration profiles, computing capacitance response during drop shocks in

order to develop constitutive relationships between mechanical stress and changes in

capacitance, requires a careful application of the prescribed boundary conditions for every

different drop.

Table 4.1: Effects of Impacted Programmer on Acceleration Profile Over 50 Runs

First Five Last Five Percent
Drops Drops Change

Drop Height Peak ∆V Peak ∆V Peak ∆V
(in) Acceleration (g) (m/s) Acceleration (g) (m/s) Acceleration (%) (%)
12 662 3.93 3,217 3.72 386 -5
18 1,584 4.52 5,526 5.20 249 15
24 2,659 5.77 7,940 6.18 199 7
30 4,386 5.59 10,576 6.00 141 7
36 6,666 6.20 12,340 7.43 85 20

Now that the importance of unique acceleration profiles applied as boundary

conditions has been established, and limitations of accelerometer data generated by the

drop tower have been addressed, it is possible to proceed with the computational parametric

board dynamics study outlined in Section 3.4. Thus, the following subsection describes the

sensitivity of the dynamic board response computational model to the variation in material

parameters as compared to the experimentally obtained strain data at the center top surface

of the PCB.

4.1.2 Computational PCB Model Performance.

The experimental drop impact data selected for the computational parametric study

of the dynamic board response was based on a 36-inch drop, which, as described in

the previous subsection, resulted in a unique set of acceleration and strain profiles. The

experimentally obtained dynamic board response generated a maximum surface tensile

strain of 6,309 µstrains with a dominant strain oscillation frequency of approximately
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4,375 Hz. Such strain response was a result of a shock with a total change in velocity,

∆V = 6.74 m/s, and a maximum peak acceleration of 15,754 g. The acceleration profile

that was measured during the event was used as an initial boundary condition in the finite

element model predicting the dynamic board surface strain oscillations by applying it

directly to the model, and also by first integrating the change in velocity during the impact,

and then applying the equivalent half-sine input as the initial acceleration profile function,

both seen in Figure 4.5.
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Figure 4.5: Acceleration Profiles Used for Dynamic PCB Response Study

Two different methods were used to apply boundary conditions to the finite element

model. The first, a surface-driven method, applied the laboratory measured acceleration

only to the nodes located on the surface of the fixture, to which the accelerometer was

attached during the tests. The surface-driven method was used in all the odd-numbered

runs in Table 3.3. The second, a body-driven method, applied the measured acceleration

profile to the nodes in the entire fixture and is reflected in all the even-numbered runs.

Both surface and body-driven methods employed raw accelerometer data as the boundary
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condition for all the runs in Table 3.3, but, due to uniqueness of each acceleration profile

representing specific mechanical stresses during each separate drop, as discussed in the

previous subsection, only a single computation was conducted for comparison with the

half-sine acceleration profile.

Both body and surface-driven methods produced a dominant frequency response close

to the experimental results. However, compared to the body-driven method, surface-driven

acceleration also generated medium frequency oscillations, on the order of 7,600 Hz in the

strain response that were evident in the FFT plot, in Figure 4.6.
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Figure 4.6: Surface vs. Body Driven Acceleration FFT; E = 21.9115 GPa, ρ = 1800 kg/m3,

Frictionless Contact Type

The 4,375 Hz frequency represented the dominant strain oscillation frequency, while

the medium frequency response between 7,000 and 8,000 KHz was due to a combination

of the variations in the acceleration profile and the flexing of the fixture walls normal to the

YZ plane. Therefore, the medium frequency response was more pronounced in the surface-

driven boundary condition runs. The fact that the medium frequency response was partly
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due to the fixture flexing was validated by the evidence that in every surface-driven run the

top surface of the board initially experienced a significant amount of tension, as outlined

by the red box in Figure 4.7.
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Figure 4.7: Surface-Driven vs. Body-Driven Acceleration Strain Responses;

E = 21.9115 GPa, ρ = 1904 kg/m3, Contact Type µ = 0.5

The peak amplitude was higher for surface-driven runs than in the body-driven cases,

which was the result of additional strain imposed on the board by the flexing fixture.

Portions of high frequency strain response were likely due to significant variations in the

acceleration profile and were much less pronounced in the cases where the acceleration

profile was a half-sine wave. Some high frequency responses were also due to the

oscillation of the clamp normal to the YZ plane, which was more evident when the friction

coefficient was reduced.

Out of the four varied parameters in the run matrix, Young’s modulus E, and density

ρ, had the greatest effect on both the peak strain amplitude and on the dominant frequency

response, regardless of the amount of friction or acceleration method. As would be

expected, due to the fact that the same amount of energy was transfered to the more elastic

material, with the decrease in Young’s modulus, the peak strain significantly increased for
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a given density, as seen in Figure 4.8. Also, due to the increased elasticity, decreasing the

elastic modulus significantly reduced the dominant frequency.
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Figure 4.8: Effect of Young’s Modulus on Strain Response; ρ = 1,800 kg/m3, Tied Contact

Type, Body-Driven BC

Density also had a relatively pronounced effect on the dominant frequency of the strain

response and on the peak strain amplitude. As density increased, the dominant frequency

was slightly reduced, while the peak amplitude increased based on the almost 14% increase

in board mass and thus kinetic energy, as can be seen in Figure 4.9.

Based on the relationship between stress and strain in the linear elastic model that

did not exhibit dampening, it was reasonable to assume that over a small range of Young’s

modulus and density changes, a least squares fit could be applied to the change in maximum

amplitude and dominant frequency response of the board with the corresponding changes

in test parameters. Thus, in order to quantify the effects of varying Young’s modulus

and density on the strain dominant frequency and peak amplitude, relative change in each

parameter was evaluated against the percent change in both strain frequency and amplitude,

as shown in Figure 4.10 and Figure 4.11.
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Figure 4.9: Effect of Density on Strain Response; E = 17.0000 GPa, Tied Contact Type,

Body-Driven BC
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Figure 4.10: Linear Strain Dominant Frequency Sensitivity to Young’s Modulus and

Density

The relationships between the variations in assigned material properties and changes

in both the dominant frequency and peak amplitudes were fairly linear. A 52% increase in
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Figure 4.11: Linear Peak Strain Amplitude Sensitivity to Young’s Modulus and Density

Young’s modulus produced a nearly 32% reduction in maximum strain at the top surface

of the board, while increasing the dominant frequency by over 22% from 4,214 Hz to

5,143 Hz. The effect of a density variation on the dynamic board response was also

significant, especially for peak amplitude. A 16% increase in density produced a 15%

increase in maximum strain at the top surface of the board, while reducing the dominant

frequency by less than 7% from 4,859 Hz to 4,520 Hz.

The contact surfaces with varied friction coefficients as part of the run matrix, were

designated as the contacts between the PCB and the fixture, on which the board rested, and

between the PCB and the clamp, which held the board down during impact. The greatest

effect of friction coefficient was observed between the two extremes, frictionless and tied

contacts, and only with respect to the dominant frequency response, as seen in Figure 4.12.

As mentioned earlier, some medium frequency oscillations, which were at least partly a

result of reduced effect of clamp oscillations normal to the YZ plane, were greatly reduced

for the frictionless contact. While tied and frictionless contact surface parameters affected
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the board oscillation frequency after the impact, no significant effect was observed between

the µ = 0.5, µ = 0.3 and frictionless friction coefficients at the PCB contacts on neither the

strain amplitude, nor on the dominant frequency response.
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Figure 4.12: Tied vs. Frictionless Contact; E = 21.9115 GPa, ρ = 1,904 kg/m3,

Body−Driven BC

The sensitivity analysis of the board strain response to the elastic modulus, density,

contact type and experimentally derived boundary conditions using finite element model

has confirmed a nearly exact dominant frequency match compared to the measured strain

in the laboratory. However, the peak amplitude of the board strain has not yet been

simulated as effectively as the frequency response. Decreasing the modulus of elasticity to

increase the peak amplitude to the measured levels, while maintaining the same dominant

frequency with the reduction in density, would require both parameters to reach unphysical

levels. Since the acceleration profile would have the greatest effect on the maximum strain

amplitude, and was constant for all the cases in the run matrix, a change in the acceleration

profile, which was related to the accelerometer data, was attempted in order to increase the

peak strain amplitude.
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In an attempt to increase the peak strain amplitude response, a half-sine input method

was used for one computational run. Due to the fact that body-driven acceleration

profiles produced more representative strain responses with reduced medium frequency

oscillations, the body-driven input method was used for the half-sine acceleration boundary

condition calculation. Doubling the amount of change in velocity of the initial impact pulse

to ∆V = 13.48 m/s over the same pulse duration of 0.1 milliseconds, thus increasing the

peak acceleration to 22,760 g, shown in Figure 4.5, produced a near exact match to the

measured maximum strain, as seen in Figure 4.13.

Applying the half-sine acceleration profile as the boundary condition to the linear

elastic model resulted in a very close agreement between the computational dynamic

board response and the measured strain in both amplitude and frequency. Also, the

sensitivity of the strain amplitude and dominant frequency to the elasticity modulus,

density, contact surface friction coefficient and boundary condition types (body or surface-

driven), is the same under both the experimentally measured and the more academic,

half-sine acceleration profiles. Additionally, even with the “clean” half-sine acceleration

profile, high frequency oscillations were much smaller, but were still observable in both the

computational predictions and laboratory measurements, as seen in the close-up of the time

domain plot in Figure 4.14 and in the frequency domain plot in Figure 4.15. The presence

of high frequency oscillations in both laboratory and computational model suggests that

they were likely a result of a physical phenomenon, such as clamp movement normal to the

YZ plane during impact as mentioned earlier, and thus dampened out quickly, especially

when the contact surface coefficient between the PCB and steel was reduced. The fact that

high frequency oscillations were most likely present due to the movement of the clamps

normal to YZ plane could also help explain the reduction in high frequency oscillations

with the increase in torque of the steel screws that held the clamps to the fixture.
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Figure 4.13: Strain Response to Half-Sine Acceleration Profile; E = 17.0000 GPa,

ρ = 2,090 kg/m3, Tied Contact, Body-Driven BC

The only apparent limitation of the current computational model that predicts the

dynamic board response to high-g impact mechanical stresses seemed to be the lack of

dampening present in the linear elastic material model compared to the strain measured

in the laboratory, as evidenced by the low peak strain amplitude decay rate shown seen

in Figure 4.13. While low peak strain amplitude decay rate may be addressed by

adding artificial viscosity to an Eulerian or Arbitrary Lagrangian-Eulerian (ALE) frames

of reference, the current study was conducted in a purely Lagrangian frame of reference

and no damping factors were available in the ALEGRA-EMMA code to simulate possible

effects of friction losses or aerodynamic drag experienced in the laboratory. However,

as long as the significant board dynamics parameters are accurately predicted, which has

been proven in this section by closely correlating the computational strain oscillation

amplitude and frequency at the top center of the PCB with the experimentally obtained

strain gage data during unique high-g impact mechanical stresses, the computational board
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Figure 4.14: Close-up of Strain Response to Half-Sine Acceleration Profile;

E = 17.0000 GPa, ρ = 2,090 kg/m3, Tied Contact, Body-Driven BC
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Figure 4.15: Half-sine Acceleration Profile Strain Response FFT; E = 17.0000 GPa,

ρ = 2090 kg/m3, Tied Contact, Body-Driven BC
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dynamics model developed here may be used for calculating the boundary conditions

imposed on capacitors surface-mounted at different locations on the flexing boards.

Unfortunately, while application of the half-sine integrated acceleration profile, or at least

filtered accelerometer data might initially seem to be an ideal method to calculate the

boundary conditions of stressed, surface-mounted components, the highly important post-

impact acceleration waveforms that would not be otherwise captured using such methods,

require the use of raw and unfiltered accelerometer data when obtaining mechanical stresses

imposed on flexing board capacitors. Therefore, due to the importance of using accurate

mechanical loads for boundary conditions when obtaining the piezoelectric response in the

following sections, the high-g impact loads on the capacitors soldered to flexing and non-

flexing boards were calculated based on the directly applied and unfiltered accelerometer

data profiles.

As discussed in Chapter 2, studies describing dynamic printed circuit board response

to drop impact acceleration profiles significantly greater than 3,000 g have been almost

non-existent in literature. However, in order to predict electromechanical response of

components such as capacitors mounted on the PCBs exposed to high-g mechanical stresses

on the order of 20,000 g, an accurate board dynamics computational model predicting

boundary conditions at different locations on the board surface first had to be developed.

Thus, out of necessity for accurately calculating the conditions to which surface-mounted

components are exposed, a computational PCB dynamics model of an ISOLA 370HR

printed circuit board, exposed to high-g drop impacts an order of magnitude higher than

those specified in the JEDEC standards, was successfully developed for the first time

and validated against the experimentally obtained data. The successful computational

model accurately simulating the dynamic board strain response, developed as a result

of the computational parametric study described in this section, was used to calculate
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acceleration profiles, which were later applied as boundary conditions when predicting

the electromechanical response of capacitors mounted on the flexing boards.

4.2 Phase II: Capacitance Response and SEM Measurements

The next phase of research was devoted to measuring capacitance changes due to

high-g mechanical shocks of high and low voltage capacitors, with ferroelectric dielectric

materials for their insulators, using the same drop tower employed to develop and validate

the computational board dynamics model in Section 4.1. The experimental capacitance

change results obtained during Phase II, were used to validate the computational

piezoelectric model predicting the electromechanical response of the Barium Titanate to

mechanical loads in Phase III. Also, during Phase II, MLCC electrode layout dimensions

were measured and capacitor materials were identified using the Scanning Electron

Microscope SEM with EDS capability. Combination of high voltage capacitor testing,

as well as the SEM imagery of mechanically stressed specimens confirmed the mechanical

mode of failure of capacitors surface-mounted on the flexing boards, while experimentally

observed changes in capacitance of low voltage components, which were simultaneously

electrically stressed during the drop, validated the presence of an electromechanical

response predicted by the computational model that was developed in Phase III. While

the main focus of the current research was on the piezoelectric response of ferroelectric

ceramics under mechanical stress, it is still appropriate to address the mechanical failure

modes observed during the impacts as is accomplished in the next subsection.

4.2.1 Mechanical Mode of Failure.

Possibly, the most important fact to note when describing the mechanical modes of

failure of capacitors observed throughout the drop impact test series is that absolutely

no complete, or even partial failures occurred in the non-flexing board configuration,

but overwhelmingly, only flexural mode of failure was observed in the components that

were mounted on the boards that were allowed to oscillate after the impact. Furthermore,
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during the low voltage capacitor drop tests, where a total of 156 connections of 1210-

size capacitors were tested in the flexing board configuration from heights generating peak

accelerations ranging from 2,958 g to 18,487 g, 100% of mechanical failures were due

to the flexural mode. The flexural failure mode, as discussed in Chapter 2, was where

the dielectric material fractures near the terminal and often propagates the crack through a

certain number of electrodes, and a portion of the terminals that contain solder, as shown

in Figure 4.16.

Figure 4.16: 1210-size Capacitor Flexural Mode of Failure

While every 1210-size capacitor survived all the 36-inch height drops, which resulted

in a maximum strain of approximately 6,300 µstrains and peak acceleration of up to

8,356 g, out of 93 solder connections for the 1812-size, high voltage capacitors, failure

rate was near 38% on the boards that were dropped from 36 inches. The vast majority

of 1812-size component failures, approximately 91%, were also due to the flexural mode

of failure, where during board oscillations, dielectric ceramic and the terminal metal were

fractured. The remaining 9% of connection failures of the high voltage capacitors were due

to pad cratering, but only after the opposing side of the component first separated via the

flexural failure mode, as shown in Figure 4.17. Just as with the 1210-size capacitors, the

larger, 1812-size components, exhibited no mechanical failures in the non-flexing board
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configuration under multiple drops and harsher mechanical shocks on the order of almost

24,000 g.

Figure 4.17: 1812-size Capacitor Flexural Modes of Failure

While high voltage capacitor connections began failing in the flexing board configura-

tions starting from drop heights of 36 inches and the first observed failures of the smaller,

low voltage capacitor connections began at 42-inch drop heights, because the focus of the

study was on the electromechanical response of capacitors, not enough statistically sig-

nificant experimental data was collected in order to establish a clear quantitative relation-

ship between the component size, peak acceleration, strain or drop height, and mechanical

failure rate. The only definitive correlation was observed between the drop configuration

(flexing or non-flexing) and the mechanical mode of failure. Specifically, the relationship

between the discrete changes in capacitance, indicative of partial contact loss of series

capacitor electrodes, and printed circuit board oscillation frequency post impact was iden-

tified during the RC method capacitance measurements, and confirmed with the impedance

analyzer data, SEM images and high speed video for both low and high voltage capacitor

experiments.

When measuring the capacitance with the RC method described in Chapter 3, it

is important to note that the total capacitance measured with this technique included

additional capacitance of the wire carrying the charge/discharge pulse from the wave
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generators. For the high voltage capacitors, capacitance of the wire was approximately

500 pF, and for the high voltage capacitor experiments, the value hovered around 600 pF.

The exact wire capacitance value varied with every change in the circuit board, because it

required cutting the leads by approximately half a centimeter every time the boards were

replaced. However, because only changes in capacitance needed to be detected during

the drop, the additional wire capacitance was not a factor, and only presented itself as

a capacitor in parallel with the MLCC under test. Therefore, all the capacitance values

measured with the dynamic RC method and presented in the following sections exhibit

an additional 500 - 600 pF capacitance and a residual capacitance of the same value after

complete separation of capacitors post impact.

In the case of the floating electrode capacitors, as discussed in Section 2.1.1,

mechanical fracture of the dielectric results in a open, which effectively reduces capacitance

of the device by a discrete value related to the fraction between electrodes with lost

electrical contact with the terminal and the total number of electrodes in the capacitor. Both

partial and complete flexural failure of the series capacitors were clearly observed during

the experiments with the high voltage devices. For example, reviewing the high-speed

video of a particular 36-inch drop of the flexing board during the high voltage capacitor

measurements confirmed no visible mechanical failures or fractures of the RC monitored

component on station C5 during the initial impact of the anvil, or while the board was

oscillating immediately after the shock. However, capacitance measurements during the

drop, uncovered discrete capacitance oscillations between the initial value of 1,000 pF

and the final capacitance of 910 pF, directly coinciding in frequency with the board strain

oscillations, as seen in Figure 4.18.

SEM imagery of certain high voltage capacitors, which were dropped in the flexing

board configuration, but did not completely separate from the pad, revealed a separation

of up to three electrodes from the terminal at the interface between the terminal and the
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dielectric material, due to the crack that resulted from excessive stresses and strains during

the impact, as seen in Figure 4.19. Thus, similar partial dielectric and electrode separations

from the terminal, as shown in Figure 4.19, could explain the discrete capacitance changes

observed in Figure 4.18, confirming the partial flexural mode of failure of the flexing board

capacitors.
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Figure 4.18: 1812-size Capacitor Discrete Capacitance Oscillations due to Flexural Mode

of Failure Correlating in Frequency to Board Strain Oscillations

The high speed video reviewed during the subsequent 36-inch drop of the same

capacitors, which were represented by the discrete capacitance oscillations in Figure 4.18,

revealed an inner terminal separation from the copper pad, and then a last momentary

contact as the board was flexing post impact, before a complete mechanical failure. Even

more intriguing, is the fact that the RC measurement technique was able to detect an

increase in capacitance to the pre-stressed value of 1,000 pF, as well as identify the

exact time when the momentary contact due to board flexure occurred, before complete
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mechanical failure of the device, as seen in Figure 4.20. SEM imagery of the failed

capacitor, which was recovered after the drop and placed back near its location of

mechanical failure, revealed a dielectric ceramic fracture that propagated completely

through two electrodes and the terminal, as shown in Figure 4.21. Finally, the impedance

analyzer capacitance measurements of stressed components, which were either dismounted

from the board or recovered post impact according to procedures outlined in Section 3.2.3,

also confirmed the discrete capacitance nature of the failed series capacitors, as seen

in Figure 4.22, when the terminal is partly separated from the dielectric material, and

subsequently, from the electrodes, as previously shown in Figure 4.16.

Figure 4.19: Fracture Propagation due to Flexural Stresses Resulting in Partial Separation

of Electrodes From the Terminal

The low voltage capacitor experiments also exhibited flexural mode of failure, as

shown in Figure 4.23, but just as with the larger, 1812 size capacitors, 1210 size devices also

failed mechanically only in flexing board configurations. While smaller capacitors failed

during the drops with slightly higher peak accelerations, discrete, oscillatory capacitance
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changes occurred at the same frequency as the board strain oscillations, pointing to the fact

that failure mechanisms in both high and low voltage capacitors were similar. However,

the slight increase in capacitance before discrete oscillations observed in Figure 4.23, was

due to the electromechanical response of the simultaneously electrically stressed dielectric

material, as opposed to reestablished contact between separated electrodes and terminals.
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Figure 4.20: Capacitance Increase due to Recontact with Electrodes, Intermittent Contact

of Capacitor with the Pad and Final Separation from the Flexing Board of 1812 Capacitor

after 36-inch Drop

Oscillations and intermittent contacts displayed in Figure 4.23 and Figure 4.20 point

to the fact that the mechanical failure modes of capacitors exposed to high-g drop shocks

follow closely the stages of component failure illustrated by Luan in Figure 2.13 and

Figure 2.14, and described in Section 2.4 [40]. However, it is only for the first time that

118



Figure 4.21: Dielectric Fracture Propagation Due to Flexural Stresses Resulting in

Complete Flexural Mechanical Failure

the correlation between discrete capacitance and flexing board strain oscillations has been

confirmed anywhere in literature for capacitors exposed to high-g impacts on the order

of 10,000 g and greater. Furthermore, unlike resistor failure, which is binary and based

on either total electrical contact or separation, series MLCC can exhibit partial loss of

capacitance based on the number of electrodes in contact with the terminal.

A clear correlation between board oscillation frequency post impact and discrete

capacitance measurements due to intermittent electrode separation from the terminals,

points to the fact that the mechanical, flexural mode of failure, is still extremely important

when predicting reliability of surface-mounted electronics. Also, the fact that no capacitors

in the non-flexing board configuration even partially failed during the drops, points to

the conclusion that the mechanical mode of failure is much more closely related to the

strain and strain rates generated from the oscillations of the PCB, rather than to the

maximum acceleration, or even the total change in velocity to which the test articles were

exposed. Hence, if board flexure can be prevented during high-g impacts, flexural mode of
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Figure 4.22: Discrete Changes in Capacitance of Mechanically Failed Devices Measured

Using Impedance Analyzer at 100 KHz

mechanical failure could possibly be delayed by at least a 94% increase in peak acceleration

from 11,670 g to 22,594 g, as tested in the laboratory for low voltage capacitors. Even

though higher peak accelerations for the non-flexing board configurations may be possible,

they were not tested due to the limitations with the drop tower, and because, as mentioned

earlier, the focus of research was on the electromechanical response predictions.

4.2.2 Experimentally Measured Electromechanical Response.

While it may be possible to prevent mechanical failure and keep the components

physically intact during the shock by applying techniques that prevent or reduce board

flexure, a significant electromechanical response of ferroelectric ceramic capacitors may

still be evoked during drop impacts. In fact, observable piezoelectric response of

ferroelectric series multi-layer capacitors was detected using the RC method during non-
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Figure 4.23: Capacitance Increase due to Electromechanical Response and Intermittent

Contact of Electrodes with the Terminal of Flexing Board 1210 Capacitor After 36-inch

Drop

flexing board configuration impacts with maximum accelerations as low as 3,000 g. Thus,

the electromechanical response of capacitors, which was observed in the laboratory is

discussed in this subsection.

The important point to realize is that the electromechanical response can be evoked

with mechanical stress only if the capacitor being shocked is simultaneously electrically

charged. Even if the dielectric material of the capacitor is ferroelectric, piezoelectric

properties will be evident only when enough potential is applied between the electrodes,

and the randomly polarized domains of the ferroelectric ceramic are aligned under the

influence of the electric field. Due to the 9 Vrms limit of the oscilloscope used to measure

the potential across the capacitors during the impact, as well as the 10 V limit of the

function generators, which were used to create the charge/discharge pulse, high voltage

capacitors were electrically charged through less than 0.3% of their 3,000 VDC rating.

Not surprisingly, throughout the 60 total drops of high voltage capacitors, which were
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confirmed to have Barium Titanate-based ceramic dielectric, none of the devices exhibited

a measurable piezoelectric response to the mechanical shock stresses in either flexing or

non-flexing board configurations with maximum acceleration peaks of up to 23,961 g.

However, during low voltage (10 VDC) capacitor tests, which simultaneously exercised

devices through 80% of their rated voltage with the +1/+9 Volt square pulse, a significant

electromechanical response of capacitors was measured with the RC technique in the

laboratory. Therefore, when discussing the electromechanical response of capacitors for

the remainder of this chapter, which explains both experimental and computational results

of the current research, it is addressed only in the context of the tested low voltage

capacitors. Furthermore, only low voltage, 1210-size capacitors, were computationally

modeled, and only their piezoelectric response to drop impact was validated with the

capacitance variation data obtained during the drop tower experiments.

The electrode layout of the low voltage, 1210-size capacitors, has already been

illustrated in Figure 3.14 and the dimensions of the inner structure of the MLCC were

measured using the SEM imagery of the bisected devices. Also, analysis of the energy

dispersive spectroscopy, seen in Figure 4.24, showed that the dielectric material for the

floating electrode multi-layer ceramic capacitors was clearly based on Barium Titanate

(BaTiO3). The L α energy of 4.465 keV for Barium was close to the K α energy of

4.510 keV for Titanium. However, based on the energy counts when using the 15 keV

energy beam, and the fact that for every Titanium atom there were approximately 6 Oxygen

and 8 Barium atoms, proved that the composition of the dielectric ceramic inside the

capacitors was based primarily on the Perovskite structure of the Barium Titanate material.

Similar analysis of the capacitors identified Nickel metal for electrode material and Copper

for the capacitor terminals. Finally, in addition to capacitor material characterization,

solder was identified to be the 37% Lead and 63% Tin compound, mounting PCB pads
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were determined to consists primarily of Copper, and the printed circuit board itself was

confirmed to have been constructed primarily from Silica Carbide fibers.

Figure 4.24: SEM Analysis of the Dielectric Material

Now that the dielectric material has been confirmed to consist of the ferroelectric

Barium Titanate, electromechanical response of the capacitors could be attributed

definitively to the piezoelectric effects during the shock, as long the devices are

simultaneously electrically stressed. Using the RC method, capacitance variations induced

by the mechanical stress were detected during the drop experiments in the flexing board

configurations of low voltage capacitors, as seen in Figure 4.25. The acceleration profiles,

board strain responses and capacitance measurements displayed in Figure 4.25 were

based on four separate impacts, each conducted using a different circuit board in the A1,

flexing configuration. Therefore, capacitance, which was measured during the impact, was

conducted on separate, previously un-shocked capacitors. Board strain for each of the drops

in Figure 4.25 was based on the strain responses of the PCB drops from exactly the same

respective drop heights, but measured 9 drops earlier.

There are a few findings regarding the change in capacitance of mechanically stressed

devices mounted on flexing board, displayed in Figure 4.25, that are worthy of mention.
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First, not every drop shock generated a significant electromechanical response that was

measurable using the RC method in the flexing board configuration. For example, the 18-

inch drop, which generated an acceleration profile with a peak of 2,958 g and maximum

strain of 2,061 µstrains, evoked no measurable change in capacitance. However, when

the electromechanical response was detected, piezoelectric effects always resulted in an

increase in capacitance, but not in a linear fashion. For example, increasing the mechanical

stress from 4,831 g peak acceleration during the 24-inch drop to 8,356 g during the 36-

inch height impact, resulted in a transitory maximum increase in capacitance of 203 pF

(9.2% based on the nominal value of 2,200 pF) and 222 pF (10.1%) during each respective

shock, behaving more like a step function, rather than a linear relationship. Also, although

not easily identifiable, capacitance changes followed an oscillatory, cyclical increases, that

closely matched the board strain oscillations in frequency, pointing to the fact that such

variations were a result of a piezoelectric effect. At least until the onset of the flexural

failure displayed in Figure 4.23, the electromechanical response during the 30-inch and 36-

inch drops was oscillatory in frequency and positive in magnitude, as will be more clearly

evident when comparing results in Figure 4.25 with the predictions of the computational

model in the next section. While the absence of capacitance increase during the 18-inch

drop can be explained by the coincidental discharge pulse timing at the exact moment

of the impact, effectively nulling the piezoelectric response by aligning the discharged

state of the capacitor with the instant the mechanical stress was applied, the non-linear

relationship between peak acceleration and change in capacitance of devices in the flexing

board configuration, suggests a more complex set of mechanisms affecting the magnitude

of the electromechanical response that will have to be addressed later in the chapter, when

comparing computational model behavior to the experimentally obtained data.

The non-flexing, B configuration of the board, produced a more linear relationship

between the peak acceleration and capacitance change of ferroelectric dielectric capacitors.
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As can be seen in Figure 4.26, the lower the initial impact and the lower the secondary

vibration effects, the proportionally smaller the capacitance change in magnitude, which is

starkly different from flexing board configuration drops. Another difference between the

varying board configuration drops was the higher piezoelectric sensitivity of the flexing

board capacitors, possibly due to the additional degrees of freedom induced during the

board flexure. For example, a 30-inch drop of the flexing board configuration produced a

221 pF (10.0%) increase in capacitance, while a similar 30-inch drop of the non-flexing

board resulted only in a 36 pF (1.6%) change.
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Figure 4.25: Electromechanical Response of Capacitors Mounted on the Flexing Boards

However, there were similarities in capacitance responses between different board

configuration capacitors. One similarity was the fact that the capacitance response

waveform was directly related to the acceleration profile at the locations where the

components were soldered. For example, the board strain during the impact of the

flexing boards produced oscillatory mechanical stresses at the copper pads, generating an
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oscillatory capacitance response described earlier and illustrated in Figure 4.25. While

the acceleration profiles of the non-flexing board capacitors were completely different,

and featured non-oscillatory initial impact effects and post shock vibrations, they still

generated capacitance changes that were closely related to the mechanical stresses to which

the capacitors were exposed, thus underscoring the need for accurate acceleration profiles

when predicting the electromechanical response.
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Figure 4.26: Electromechanical Response of Capacitors Mounted on the Non-Flexing

Boards

Also, just as in the case of the flexing boards, some of the non-flexing board

configuration impacts did not produce any measurable electromechanical response. For

example, out of the ten total times that the same exact board, and thus capacitors, were

dropped sequentially from heights ranging from 72 to 12 inches, only seven impacts

produced a piezoelectric effect, evidenced by the increase in capacitance proportional
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to acceleration and displayed by the first seven data series plots using solid lines in

Figure 4.26. Drop tests from 66, 54 and 36 inches did not evoke a measurable capacitance

response, and thus, were not plotted. Just as in the case of the flexing board configurations,

the lack of observable electromechanical response was most likely due to the discharge

pulse at the time of the initial impact, preventing alignment of the randomly polarized

domains, and thus, nullifying the piezoelectric effects.

The last, single, 72-inch drop represented by the dashed line was conducted using

a new board with previously unstressed capacitors. The two 72-inch drops displayed

in Figure 4.26 were identical, but interestingly enough, produced different acceleration

profiles, as well as capacitance responses. The difference in acceleration profiles may be

explained by the impacted felt programmer material, addressed in Section 4.1, but the

fact that both drops evoked significantly different capacitance responses points to the need

to use accurate, unfiltered accelerometer data as the input boundary conditions for the

computational models.

Another reason for using raw, unprocessed accelerometer data for boundary conditions

when predicting electromechanical response, was the relative sensitivity of the capacitance

to the initial and post impact accelerations. For example, during the 72-inch drop in the

non-flexing board configuration, the initial impact peak acceleration was very close to the

post impact vibrations detected by the accelerometer, but, as can be seen in Figure 4.27, the

magnitude of the capacitance response to the post impact accelerations was significantly

greater than to the initial impact, despite the fact that the duration of the high-g stresses

during the shock was larger, resulting in the bulk of the change in velocity. However,

when the post impact acceleration vibrations were significantly lower, 2,516 g, and less

than half of the initial impact peak acceleration of 7,177 g, as observed during the 30-inch

drop, the primary capacitance increase was due to the initial shock. The sensitivity of the

capacitance to jerk, which is a time derivative of acceleration closely relating to pressure
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inside the material, was another indication that electromechanical response was a result

of a piezoelectric effect, and that the precise, and unprocessed boundary conditions must

be used in the computational model that predicts changes in capacitance of ferroelectric

dielectric capacitors under mechanical loads.
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Figure 4.27: Electromechanical Response of 72-inch vs. 30-inch Height Drop Capacitors

Mounted on the Non-Flexing Board

The last intriguing result of analysis of the experimentally gathered data shown in

Figure 4.27 was the residual increase in capacitance during high drop heights, which

did not decrease within milliseconds of the main impact. For example, 72-inch and 60-

inch drops, which generated relatively high amplitude post impact vibrations, exhibited an

approximately 1.4% (30 +/-0.5 pF) increase in capacitance even after the vast majority

of the vibrations have significantly subsided within 2.5 milliseconds. The capacitance

did eventually decrease to its original value of 2,800 pF, as evidenced by the pre-shocked
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calculations of capacitance for the same exact device, which was dropped in the previous

test run, but the oscilloscope could not detect the decrease in capacitance after the event

due to the 10 millisecond time limit on the data acquisition duration at the high data rates

required by the RC technique. While the exact reason for the long capacitance recovery

times is unknown, the residual increase in capacitance was more pronounced in higher

drop height experiments, which generated higher peak changes in capacitance, and thus,

were probably related to longer charge dissipation duration, most likely exacerbated by the

concurrent post impact vibrations.

During Phase II of research, experimental procedures outlined in Chapter 3 uncovered

mechanical modes of failure of capacitors and gathered capacitance data, which was later

used to validate the electromechanical response predicted by the computational model of

the MLCC. The partial and complete flexural modes of failure observed during the drop

of both low and high voltage capacitors in the flexing board configuration, point to the

fact that the mechanical separation of surface mounted components is much more closely

related to the strain and strain rates of the flexing PCB surface, than to the magnitude of

the peak acceleration during high g drop impacts. Dynamic RC capacitance measurement

method, SEM imagery of failed components and static impedance analyzer measurements

were all crucial in determining the exact mechanical failure mechanisms. The fact that

no mechanical failures were observed during multiple non-flexing board configuration

shocks of up to 24,000 g, while every single surface mounted capacitor connection failed

during board oscillations from drops generating 8,000 to 15,000 g in the flexing board

configuration regardless of the size of the device, makes a strong case for using techniques

such as potting, which attempt to increase the reliability of electronics packaging, and

reduce board oscillations and flexure. However, preventing board flexure through the use

of support structures or potting, addresses only part of the electronics reliability issues.
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Observed electromechanical response of ferroelectric dielectric capacitors produced

capacitance increases of up to 10% of the nominal value during the impact regardless

of board dynamics. While the electromechanical response always seemed to increase

the capacitance of the devices, such instabilities, particularly when the capacitors are

simultaneously being electrically stressed, can lead to an excess amount of charge, which

might later damage other circuitry components. Furthermore, while it is apparent that the

electromechanical increase in capacitance is very closely related to both magnitude and

waveform of the applied mechanical loads, the complex piezoelectric effect evoked during

the shock, as evident from various loading conditions and post impact residual capacitance

changes, requires the use of computational models to help predict electromechanical

behavior and address the electrical reliability of devices in order to increase their reliability

and the overall survivability of electronics. Thus, the efforts of Phase III in this research

were focused on creating and validating a computational model of the MLCC that predicts

electromechanical response of capacitors to a unique set of mechanical loads present during

the high-g drop impacts, based on the previously gathered and analyzed experimental data.

4.3 Phase III: Computational Electromechanical Response Model

The main goal of Phase III of research was to create an accurate, experimentally

validated, computational model predicting the electromechanical response of ferroelectric

dielectric ceramic multi-layered capacitors and to develop quantitative, constitutive

relationships between the mechanical stress and the capacitance value of the component.

While the mechanical mode of failure discussed in the previous section is important in

terms of component reliability, the focus of this research was primarily on modeling

electromechanical response of devices. Thus, the piezoelectric model that was chosen for

simulating the material properties of the ferroelectric ceramic under mechanical stress was

optimized for calculating variables pertinent to the electromechanical response, such as

permittivity of Barium Titanate, as opposed to modeling the mechanical break up of the
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components. In fact, ALEGRA-EMMA did not have the necessary tools, such as CZM or

XFEM to accurately predict crack initiation and propagation through the material.

Since the focus of the current study was on calculating the piezoelectric response

of ferroelectric ceramics, only the drop tests that produced observable variations in

capacitance in the laboratory were computationally modeled. The only experimental data

to which the comparison of the computational capacitor sub-model results could be made,

were the three flexing board drops displayed in Figure 4.25 and the eight non-flexing board

configuration impacts in Figure 4.26, discussed in Section 4.2. Therefore, computational

runs of low voltage capacitor sub-model that was developed and mechanically stressed

using boundary conditions measured directly by the accelerometer during each individual

test, are identified in a matrix in Table 4.2.

Table 4.2: Computational Run Matrix to Calculate Electromechanical Response of Low

Voltage Capacitors (“Drop #” Below Corresponds to Experimental “Test #” in Table 3.2)

Drop # 17 18 19 20 22 24 25 27 28 29 31
Drop

24 30 36 72 60 48 42 30 24 18 72Height (in)
Peak

4,831 6,744 8,356 21,874 18,487 13,702 11,670 7,177 4,833 2,698 22,594Accel. (g)
Mesh Type

C C C C C, F C C C C C C(C or F)
PCB

A, Flexing B, Non-flexingConfig.
Sim.

0.004 0.0025Time (s)

As discussed in Section 2.1 and shown in Equation (2.7), the only parameters that

significantly affected capacitance of the device, assuming a constant number of electrodes

in the MLCC, are the area of the overlapping electrodes, distance between the opposing

charge plates and the permittivity of the dielectric in the direction normal to the electrode

131



material. Therefore, any significant change in capacitance, such as the 10% increase in

value observed after the drop impact in the laboratory could only be explained by the

combination of the variation of the overlapping electrode area A, dielectric thickness d,

and permittivity ε = ε0K, where K is the dielectric constant. For the three flexing board

configuration drops, the measured accelerometer data for each event was first applied as

input to the board dynamic model developed in Section 4.1 and the acceleration profiles

in the x, y and z directions, calculated at the surface locations where the capacitors

were soldered, were later applied to the capacitor sub-model to calculate the changes

in ferroelectric material permittivity. In the eight cases of the capacitors mounted on

the non-flexing boards, because the drop acceleration profile was measured on the same

fixture surface to which the board was affixed, experimentally gathered accelerometer data

was applied directly to the sub-model at the interface of the solder and the terminal as

the input boundary condition only in the vertical, z-direction. Because the non-flexing

board mechanical stress conditions were simpler and more accurately, and realistically

represented the loads to which the capacitors were exposed compared to the flexing board

scenarios, computational sub-model results of capacitance response of the devices mounted

on the B configuration boards are first addressed in the following subsection.

4.3.1 Non-flexing Board Capacitor Response.

From previous discussion, as long as the internal structure of the device remains intact

during the impact, there are only three parameters affecting capacitance of the multi-

layer ceramic capacitors - overlapping area A, and distance d, between the electrodes,

and permittivity ε, of the dielectric material. Because computational capacitor sub-model

was developed in the Lagrangian frame of reference, the changes in A and d, which were

represented by the amount the material tracers located at the opposing corners of the MLCC

model shifted in the corresponding directions, accurately indicated the extent to which the

material deformed during the impact. The amount of maximum material deformation, in
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turn, signified any possible change in capacitance due to the linear variations in calculated

overlapping electrode area and distance between plates.

Unfortunately, the amount of deformation predicted by the computational model could

not represent the 10% change in capacitance during the shock that was observed in the

laboratory. For example, during a non-flexing board configuration drop from a 72-inch

height, generating an almost 22,000 g peak acceleration, tracers on the opposite sides of

the capacitor shifted a total of 7.02 µm closer to each other, introducing an increase in the

overlapping electrode area A, by slightly over 0.0003%. Due to the linear relationship

between the overlapping electrode area and capacitance C, the 0.0003% increase in

overlapping area between electrodes would result in the same amount of increase in

capacitance. Therefore, the more than four orders of magnitude difference between

the computationally predicted and experimentally measured variations in capacitance,

indicated that the mechanical shock-induced deformation of the dielectric could not explain

the changes in capacitance observed in the laboratory. Also, the computationally calculated

compression of the dielectric during the same 72-inch height drop, resulted in the tracers

converging by only 0.67 µm, reducing the distance between plates by less than 0.0001%

and eliminating the possibility that the changes in capacitance were caused by the structural

deformation of the ceramic after the shock. Furthermore, if the deformation of the dielectric

could explain the significant increase in capacitance observed in the laboratory, the change

in capacitance value would be evident even during the high voltage capacitor experiments

and during every drop, especially for the same non-flexing board tests of low voltage

devices from the 66-inch, 54-inch and 36-inch heights. However, because the capacitance

response from drop to drop was intermittent, despite the similarity of the mechanical loads

for each board configuration, suggests that structural deformations of the capacitors were

not the cause of the capacitance increase during the impact, but were more than likely

a result of the timing of the alignment of randomly polarized domains when capacitors
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were charged at the time of shock, as discussed in Section 4.2 [11]. Finally, ceramic

deformations calculated by the numerical sub-model were near the 1e−5 absolute error

of the ALEGRA-EMMA solver, where it is possible that the predicted increase in the

overlapping area and decreased distance between overlapping electrodes was mainly due

to the numerical model limitations.

With the physical changes in dimension of the dielectric material eliminated as the

cause for the capacitance increase observed in the laboratory during the impact, the only

last possible explanation for capacitance increase was due to the piezoelectric effect of

the mechanical stress produced by the drop impact on the permittivity of the dielectric

ceramic [20, 27]. Therefore, in order to predict the electromechanical response of

capacitance observed during the experiments, the focus of the computational sub-model of

the capacitor exposed to mechanical loads was on calculating the shock-induced variations

in permittivity in the z-direction.

The importance of using unique, raw and unprocessed accelerometer profiles for

boundary conditions was previously discussed in Section 4.1 and Section 4.2. In the non-

flexing board case, using specific single drop acceleration profiles was even more important

than employing filtered or even half-sine wave profiles in order to accurately calculate

the capacitance response based on the changes in permittivity. For example, as seen

in Figure 4.28, by capturing only the initial impact shock profile, the electromechanical

response due to the post impact acceleration vibrations completely disappeared and even

the waveform of the capacitance response to mechanical load significantly diverged from

the experimental results. Therefore, in order to seize the uniqueness of each individual

drop acceleration profile and, in turn, capacitance variations based on the said boundary

conditions, all the computational runs of the MLCC sub-model in Table 4.2 were conducted

with the unprocessed accelerometer data as an initial input for the non-flexing, as well as

flexing board configurations.
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Figure 4.28: Effect of Processed Acceleration Profile as Boundary Condition on

Computationally Obtained Permittivity and Capacitance Values for a 72-inch, Non-flexing

Board Drop

While using raw and unfiltered accelerometer data for boundary conditions in the

MLCC sub-model captured the post impact acceleration and vibration effects more

precisely than the filtered boundary conditions, the calculated permittivity response to the

mechanical shock still produced values approximately three orders in magnitude lower than

necessary to obtain the 5.9% capacitance variations for a single 72-inch drop test observed

in the laboratory, as seen in Figure 4.29. Furthermore, as seen in Figure 4.29, calculated

z-direction permittivity exhibited both increases and decreases from its nominal value of

16.81 nF/m after the initial impact, correlating much closer in shape to the acceleration

profile, rather than the experimentally obtained capacitance increase. The fact that the

capacitance calculations based on the computational sub-model results for permittivity

135



changes applied directly to Equation (2.7) exhibited a piezoelectric response, but were three

orders of magnitude lower than the capacitance increase observed during the experiments,

necessitated the development of a new constitutive relationship that accurately described

the electromechanical response based on the acceleration boundary conditions applied to

the newly developed capacitor sub-model.
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Figure 4.29: Capacitance Response Based on Direct Calculation of the Permittivity Results

in 3 Order of Magnitude Difference Between Experimental Data and Computational

Predictions

As discussed in Section 2.3, according to the Landau-Ginsberg model for the behavior

of ferroelectric material, free energy was calculated using the magnitude of the gradient of

the polarization vector. The LG theories, suggesting that the electromechanical response

is likely tied to the magnitude of the polarization, imply that permittivity response,
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and thus capacitance variations under mechanical stress, can be calculated by applying

the magnitude of the computationally obtained permittivity change. However, because

permittivity ε, of the dielectric in Equation (2.7) is related to the permittivity of free space

ε0, and the relative dielectric constant K, the magnitude of the piezoeelctrically induced

permittivity variations computed by the sub-model was first added to the permittivity of

vacuum and then multiplied by the dielectric constant to obtain the final value. The

procedure for calculating the capacitance response to mechanical stress employed the

concept of the capacitor volumetric efficiency to predict the electromechanical response

of components shocked with the drop tower.

First, the volumetric efficiency, Evol, of the capacitors with nominal capacitance of

2,200 pF was calculated by dividing the capacitance by the starting permittivity in the z-

direction, εz. Then, the magnitude of averaged tracer permittivity changes, |∆εavg|, was

multiplied by the dielectric constant, K, and added to the initial value, εz. Capacitance

was finally calculated by multiplying the previously calculated volumetric efficiency by the

newly calculated permittivity, as shown in Equation (4.1) below.

C =
(
εz + K|∆εavg|

)
Evol =

(
ε0 + |∆εavg|

)
K

A
d

(4.1)

Using the newly developed constitutive relationship in Equation (4.1) and the

unprocessed acceleration profiles as the boundary conditions for applying mechanical

stress, computational capacitance responses for all the non-flexing board configuration

drops were calculated and the results presented in Figure 4.30. Comparing the capacitance

changes under shock between the experimentally measured and computationally obtained

values, the waveforms of the electromechanical response matched very closely. For

example, not only did the model predict greater increases in capacitance during post impact

vibrations for higher drops, such as the 72-inch heights, but the relative magnitude of

the capacitance response, both drop to drop, as well as between initial and post impact

acceleration effects for any single impact, was proportional to jerk, as shown in Figure 4.31.
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Such close waveform proportionality reinforced the theory that the capacitance changes

were due to piezoelectric effects of ferroelectric dielectric during the impact, and that

the increase in capacitance was due to the electromechanical response of the ceramic, as

opposed to the mechanical or structural breakdown of the material.
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Figure 4.30: Experimental vs. Computational Capacitance Response for All 8 Non-flexing

Board Drops

While experimentally measured and computationally obtained capacitance changes

were within the same order of magnitude, despite varying by as much as 400%, the

difference between computationally calculated and experimentally measured values was

within 2% of the nominal capacitance of the MLCC. The discrepancy between sub-model

predictions and laboratory data could be reduced by refining the mesh and also by lowering

the elasticity modulus constants. Unfortunately, refining the mesh from 50 µm to 20 µm
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Figure 4.31: Experimental vs. Computational Capacitance Waveform Comparison

element size, would decrease the time step necessary for the stability of the finite element

computation to such as small value (1.74 nanoseconds), that it would allow only two

drops to be simulated, based on the total 670,000-hour allocation for this research on the

HPC. Despite the small time step and the large number of hours required to conduct fine

mesh runs, purely for convergence study purposes, a single run in the non-flexing board

configuration was carried out. Also, as discussed at the end of Section 3.5, the values for

the elastic modulus constants were selected from literature for Barium Titanate ceramic,

which was not necessarily the exact same material used in the capacitors under test. In

fact, the capacitor manufacturer specified a single direction Young’s modulus for the X7R

Barium Titanate-based ceramic used for the MLCC to be as low as 105 GPa, compared

to the 166 GPa used in the computations. In order to test the sensitivity of the sub-model
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capacitance calculations to the variations in Young’s modulus and mesh element size, C11

and C33 constants were reduced by 30 GPa, from 166 GPa and 162 GPa, to 136 GPa and

132 GPa respectively, with simulations conducted with 50 µm, and 20 µm elements for

slightly over a millisecond duration. As expected, and shown in Figure 4.32, with both

the decrease in elastic modulus and the refinement of the mesh, the capacitance response

predicted by the sub-model converged to the experimentally measured values, validating

the electromechanical response model and the newly developed constitutive relationship

between the capacitance, and the mechanical stress-induces changes in permittivity for

ferroelectric ceramic capacitors mounted on the non-flexing boards.
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Figure 4.32: Effect of Reducing Elastic Modulus Constants and Refining the Mesh;

60−inch, 18,487 g Impact

Closer agreement between computational and experimental data than shown in

Figure 4.32, was not reasonable, due to the fact that the acceleration profiles applied

as boundary conditions to the capacitor sub-model, despite being unprocessed, were not
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measured at the same exact surface on which capacitors were mounted, with the PCB

material in between. Also, piezoelectric and permittivity moduli constants were selected

from literature, and, as mentioned earlier, did not necessarily represent the material

properties of the ferroelectric dielectric used inside capacitors under test. Despite these

inconsistencies between the sub-model and the experiments, for the first time in literature,

the electromechanical response of ferroelectric ceramic capacitors subjected to high-g drop

impacts was relatively accurately predicted based on the newly developed constitutive

relationship between capacitance and the change in permittivity induced by the mechanical

stress. However, with slight modifications, the developed constitutive relationship was

also applicable to the non-flexing board configurations, despite the additional degrees of

freedom generated by the flexure of the ferroelectric, as discussed in the next subsection.

4.3.2 Flexing Board Capacitor Response.

When calculating the capacitance response of the devices dropped in the flexing

board configuration, the same capacitor sub-model was used, as during the non-flexing

board investigations. The only difference between the computations, were the acceleration

profiles that were applied as boundary conditions. During the non-flexing board

experiments, the board did not flex and no significant amount of strain in the x or

y direction was imposed on the top surface of the PCB, where the components were

mounted. Thus, only vertical drop shock acceleration profile was applied to the non-

flexing board cases. However, in the flexing board scenarios, with the top surface strained

at up to 6,000 µstrains in the x-direction, board dynamics produced additional degrees of

freedom, which contributed significant accelerations in the x and y directions. Therefore,

as mentioned earlier, board dynamics model developed in Section 4.1 was first used to

determine the acceleration profiles at the locations where the capacitors were mounted, and

then applied to the capacitor sub-model to calculate the changes in permittivity, from which

capacitance was calculated.
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While the additional degrees of freedom in the flexing board cases created different

dynamics, the stiff ceramic dielectric material still did not produce structural deformations

to explain the more than 10% increases in capacitance. Just as in the non-flexing board

scenarios, flexing board deformation could only account for changes in the overlapping

electrode area and thickness that resulted in computational capacitance response four orders

of magnitude lower than observed in the laboratory. Therefore, the assumption that changes

in capacitance were due to the electromechanical response of ferroelectric ceramic under

stress, was still valid for the flexing board case.

Also, just as in the case of the non-flexing board, the flexing board capacitor elec-

tromechanical response matched closely in waveform to the applied triaxial acceleration

profiles, which in turn translated into primarily x-direction strain after the dominant z-

direction acceleration. As can be seen in Figure 4.33, at least until components begin to

mechanically fail and separate from the board, capacitance changes, both measured during

the experiment in the laboratory and predicted by the computational model are cyclical in

nature, corresponding in frequency to the x-direction strain of the top PCB surface.

However, in order to accurately predict the magnitude of the capacitance response

in the flexing board scenario, due to the additional degrees of freedom and stronger

electromechanical response, the constitutive relationship for calculating capacitance

changes based on mechanical stress-induced permittivity variations in Equation (4.1), had

to be modified. The magnitude of the model-calculated change in permittivity |∆εavg|,

was divided by ten in order to obtain the updated constitutive relationship between the

computationally calculated changes in permittivity and the capacitance response to the

mechanical drop shock for the flexing board cases, as can be seen in Equation (4.2).

C =
(
εz + 1/10K|∆εavg|

)
Evol =

(
ε0 + 1/10|∆εavg|

)
K

A
d

(4.2)

The exact interaction between the polarized domains under mechanical stress

conditions indicative of capacitors mounted to the flexing board, which caused the sub-
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model to overestimate the electromechanical response was unknown. However, the fact

that in the flexing board cases, where more complex boundary conditions were applied to

the material and capacitance changes of 10% were observed in the laboratory even from a

36-inch drop, while only a 6% capacitance increase was detected in the non-flexing board

scenario under a 72-inch impact, confirmed the sensitive nature of the ferroelectric material

to the precise loading conditions.
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Figure 4.33: Experimental vs. Computational Capacitance Response for All 3 Flexing

Board Drops

One of the possible explanations for flexing board capacitance response discrepancy

between the experimental data and the computational predictions, rests with the accuracy of

the boundary conditions applied to the ferroelectric ceramic model. From the non-flexing

board cases, it has already been established that piezoelectric response of ferroelectric

ceramic is directly tied to the acceleration profile and, in particular, to the jerk. However,
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in order to accurately transmit complex shock profiles collected at the surface of the fixture

and propagate their effects to the board dynamics, from which exact surface accelerations

can be determined and applied precisely as boundary conditions to the sub-model, a

more accurate board dynamics model than the one developed in Section 4.1 must be

created. The fact that the board dynamics model underestimates strain in nearly every case,

indicates that it overestimates the modulus of elasticity, making the board appear stiffer.

The net effect of the stiffer board, is the increased magnitude of the acceleration profiles

calculated at the location of mounted capacitors, resulting in the higher electromechanical

response predictions. While the extent to which computationally stiffer board increases the

predicted capacitance response is unknown, reducing the modulus of elasticity of the board

to the point where its computationally obtained strain response matches experimentally

measured strain, could easily reduce the acceleration magnitude of boundary conditions at

the capacitor locations to the levels that generate more comparable capacitance variations

to the experimental data. The combination of the accurately predicted electromechanical

response of the flexing board in frequency, corresponding to the board surface strain

oscillations, and the relatively accurate capacitance magnitude increase compared to the

experimental data, validated the capacitor sub-model and its predictions of change in

permittivity due to piezoelectric effects.

As mentioned at the beginning of this chapter, the three distinct phases of the

current research produced several results and contributions related to the survivability of

electronics exposed to high-g impact stresses. First, a computational dynamics model was

developed using isotropic, linear elastic material model to predict board strain oscillations

post impact. Based on the parametric computational study of the effects of varying

parameters, such as density and Young’s modulus, on the frequency and magnitude of board

strain oscillations generated by the 15,754 g peak acceleration impacts, computational

surface strain predictions of the ISOLA 370HR boards were accurately predicted, and
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compared to the experimental data. Board strain oscillation frequency was predicted to

within 2.3% of the measured data and using the unfiltered acceleration profiles, magnitude

of the peak strain oscillations was simulated to within 45% of the strain gage measurements

at the top center of the PCB. While similar analysis has been previously performed and

available in open literature for the FR4 circuit board material at drop impacts with peak

accelerations on the order of 3,000 - 4,000 g, it is only for the first time that the input-g

method has been applied to computationally predict board dynamics under shock impacts

an order of magnitude greater than those specified in the JEDEC standards. However, the

main outcome of the development of the dynamic board response computational model

was the calculation of the triaxial flexing board acceleration profiles at the pads where

the capacitors were soldered, in order to provide accurate boundary conditions for the

capacitance response sub-model.

Next, using the RC measurement technique, transient capacitance response during

the shock of ferroelectric MLCC was measured for the first time. Near real-time

monitoring of the capacitance identified the flexural mode of mechanical failure for surface-

mounted capacitors exhibiting the same three stages of failure previously described in

Chapter 2. However, with the addition of the impedance analyzer and SEM analysis of the

mechanically failed components, both complete and partial multi-layer ceramic capacitor

failure was tied to the strain and strain rate, with capacitance varying based on the fraction

of electrodes still in contact with the terminal during post impact board oscillations. While

the boards were allowed to flex, initial mechanical component separation mechanism of

the surface-mounted devices was always based on the flexural mode of failure, which

began at strains as low as 5,000 µstrains, depending on the size of the failed components.

Even though the physical dimensions of the capacitors seemed to marginally affect the

maximum peak acceleration, which components could withstand, the greatest impact on

the mechanical mode of failure was the amount the board was allowed to flex after the drop
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shock. In fact, while all the components in the flexing board configuration began to fail

at 11,670 g, non-flexing board configurations did not produce any mechanical separations

of capacitors with drop shocks up to 22,594 g tested in the laboratory. While mechanical

failure seemed to be avoidable, the electromechanical response, which generated significant

piezoelectrically-induced capacitance increases of up to 10%, unfortunately, could not be

averted with simple board oscillation reduction techniques.

Thus, finally, a computational sub-model of the MLCC was developed, and the

piezoelectric effects on permittivity calculated in the computations were able to predict the

capacitance increase observed in the laboratory for both the flexing and non-flexing board

scenarios. For the first time, the variations in permittivity calculated by the computational

sub-model could be used to predict the capacitance changes of devices undergoing

mechanical drop shock to within the same order of magnitude by developing a simple

constitutive relationship shown in Equation (4.1), which is particularly critical in high

voltage capacitor applications. As long as the capacitors were electrically charged during

the impact, aligning the randomly polarized domains, up to a 10% increase in capacitance

was observed for the devices mounted on the flexing boards exposed to approximately

15,000 g peak accelerations, while up to a 6% increase in capacitance was measured during

the non-flexing board drops despite the near 24,000 g peak accelerations encountered in

the laboratory. The 6-10% increase in capacitance is significant enough when designing a

circuit to require a quantification of the effect that can be correlated to specific mechanical

stress conditions in which the components will operate. The experimentally measured

changes in capacitance due to the piezoelectric effect for both flexing and non-flexing

boards, as well as the partial and complete discrete changes in capacitance coinciding in

frequency with board oscillations due to the flexural mode of failure, which were described

in the current chapter and summarized in the previous two paragraphs, are illustrated in

Figure 4.34.
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Figure 4.34: Approximation of Mechanical Failure Probability and Electromechanical

Response of Flexing and Non-flexing Boards

While additional degrees of freedom for the flexing board capacitors resulted in

greater capacitance response, as illustrated in Figure 4.30 and Figure 4.33, the fact that the

capacitance increase of ferroelectric ceramic dielectrics exposed to mechanical stress was

due to the piezoelectric response was evidenced by the fact that the capacitance waveform

closely related to the stress-induced changes in permittivity predicted by the computational

model and validated by the experimental measurements. However, although it might be

possible to reduce the possibility of a mechanical failure, lower the electromechanical

response and stabilize the performance of the devices by preventing board flexure during

high-g impact, as seen in Figure 4.34, significant increases in capacitance must still be

addressed when attempting to predict component reliability and electronics survivability of

ferroelectric dielectric capacitors exposed to peak accelerations above JEDEC specified

standards. Therefore, the newly established constitutive relationship based on the
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developed computational model for calculating permittivity variations and capacitance

increases of devices in response to a high-g mechanical drop impact is a significant

contribution to the science of electronics survivability.
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V. Conclusions

The aerospace industry is constantly striving to develop technology that is capable of

operating in different environments, thereby exposing electronics to progressively

harsher mechanical stress conditions. Additionally, the desired weight savings, which

are a byproduct of miniature electronics, continually drive requirements for smaller

electrical components. In turn, in order to accommodate the industry request for

physically smaller devices, while maintaining functionality of the electrical components,

use of exotic dielectric materials inside electronic packages has quickly proliferated.

Particularly, smaller capacitors requiring higher voltage and greater capacitance ratings

have started to employ high dielectric constant materials, such as ceramics based on Barium

Titanate. However, the same ferroelectric properties of exotic ceramics that desirably

increase the material’s dielectric constant, also make the material piezoelectric in nature.

Unfortunately, the reliability of ferroelectric multi-layered ceramic capacitors has been

seldom investigated under the harsh mechanical stress conditions, to which ferroelectric

components are increasingly exposed.

The system level testing of components utilizing such materials, and even the

standards to test the capacitors exposed to the newly explored conditions, make the

development of survivable electronics technology cost prohibitive and time consuming.

Not only are the devices untested at the system level due to the lack of standards for

high mechanical load conditions above 3,000 g, but even raw material properties, such

as orthotropic elastic modulus, piezoelectric constants and permittivity moduli require

elaborate experimental equipment and measurement procedures. The requirement for

specialized laboratory equipment and specific dimensions of the material sample is perhaps

why the manufacturers that already use ferroelectric ceramics in their capacitors have

only recently began investigating properties of the bulk ferroelectric materials, making
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the determination of the exact electromechanical properties of the ferroelectric dielectric

ceramics based on Barium Titanate very sparse. The piezoelectric resonators and raw

dielectric materials were not available for this research in the dimensions necessary to

measure the electromechanical properties of the ceramic used in the MLCC. Therefore,

the focus of this study was on developing an experimentally validated computational sub-

model of a multi-layered capacitor and a constitutive relationship between the model-

predicted permittivity and the change in capacitance of the device under mechanical

stresses an order of magnitude greater that even those specified in the current JEDEC

standards for board level component survivability testing.

In order to develop and validate the finite element analysis sub-model and the

constitutive relationship between the mechanical stress-induced permittivity variations

and the increases in capacitance, the sub-model was employed under flexing board

configurations, which represent most of the commercial packaging configurations, as well

as in the non-flexing board scenarios, which are indicative of high-g impact survivable

technology and military applications. In the non-flexing board cases, accelerometer

data measured during the impact was applied directly to the capacitor sub-model for

mechanical stress boundary conditions. However, for the flexing board configuration,

triaxial acceleration profiles at the locations where the components were soldered, were

first calculated by the newly developed numerical board dynamics model and later applied

as boundary conditions to the capacitor sub-model.

The first computational model developed using ALEGRA-EMMA predicted board

dynamics and calculated the triaxial acceleration boundary conditions imposed on the

surface mounted capacitors in the flexing board configuration. The board dynamics model

was also validated with experimental surface strain measurements and also, by conducting

a computational parametric sensitivity study. Board strain oscillation frequency was

predicted by the numerical model to within 2.3% of the experimental measurements and the
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peak strain amplitude was precisely calculated using the half-sine wave acceleration profile.

Despite the fact that an accurate acceleration waveform is required to predict MLCC

electromechanical response, for the first time in the open literature, the current research

confirmed the relatively unknown ISOLA 370HR material properties and employed the

computational board dynamics model to drop impacts an order of magnitude greater than

those specified in the JEDEC standards, and explored by the commercial industry. The

newly developed computational PCB dynamics model, which accurately predicted board

strain response in both frequency and amplitude, proved that a simple linear elastic material

model inside the ALEGRA-EMMA finite element code can be used to output acceleration

profiles to which components are exposed anywhere on the surface, even during the high-g

drop impacts, greater than 3,000 g. Such a simple computational board dynamics model can

be easily employed to accurately quantify mechanical stresses to which surface mounted

components are exposed, and subsequently applied as boundary conditions to the device

sub-models, when predicting capacitor electromechanical response.

In order to experimentally validate electromechanical response of numerical capacitor

sub-models, both mechanical mode of failure and electromechanical capacitance response

of capacitors were detected using the RC measurement technique. While the capacitance

measurement method used during this study was not new, for the first time, the technique

was applied to measuring transient capacitance changes of components exposed to high-g

impacts on the order of 15,000 - 24,000 g. Despite the fact that even after multiple impacts

as high as 24,000 g no components partially or completely failed in the non-flexing board

configurations, when flexing board capacitors began to separate at drop shocks as low as

approximately 12,000 g, confirmed that the overwhelmingly flexural mode of mechanical

failure was related to the strain and the strain rates to which the solder interconnects were

exposed. The RC technique, impedance analyzer and SEM imagery analysis were all

adequate to detect the partial discrete variations in capacitance related to the fraction of the
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number of separated electrodes from the terminal. However, the RC method was also able

to correlate the discrete changes in capacitance to the board flexure oscillation frequency

and detect the three stages of mechanical component failure, previously described in the

literature for resistors and circuit boards exposed to less than 4,000 g impacts. Thus,

the RC dynamic measurement technique proved to be a suitable and accurate capacitance

measurement method for monitoring discrete capacitance changes of surface mounted

components, as well as detecting the precise time of intermittent and complete flexural

modes of mechanical failure, especially during high-g impacts.

While mechanical mode of failure was clearly observable, the main focus of

this research was on predicting the electromechanical response of capacitors that use

ferroelectric ceramics for the dielectric. The energy dispersive spectroscopy confirmed

the Barium Titanate material as the basis for the dielectric inside the capacitors under test,

making it reasonable to attempt to predict the piezoelectric response of capacitors and to

observe changes in capacitance of devices under mechanical shock. Both flexing and non-

flexing board capacitors exhibited the electromechanical response in the laboratory, which

validated the developed sub-model predictions and constitutive relationship calculations

of capacitance variations based on the precise mechanical stress waveform. In both

cases, computationally obtained changes in capacitance correlated closely to the time

derivative of the acceleration profiles, to which the capacitors were exposed during the

drop. Capacitance was easily calculated using the new constitutive relationship by adding

the magnitude of the permittivity variation that was predicted by the sub-model to the

permittivity of free space, and then multiplying the sum by the original dielectric constant

and the volumetric efficiency factor. While the waveform of the capacitance increase was

accurately predicted, and clearly related to the shape of the acceleration profile, magnitude

of the computational capacitance predictions was less accurate, but still within 2% of the

nominal capacitance of the devices under shock. Therefore, in order to calculate the
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electromechanical response and quantify the changes in capacitance of surface mounted

devices, a combination of the newly developed capacitor sub-model and the modified

constitutive relationship for the capacitance of the MLCC, with the addition of the

numerically obtained changes in permittivity, can now be employed to make reliability

predictions of electronic packages exposed to harsh mechanical stresses.

Reducing the degrees of freedom of the applied mechanical stress by restricting

the board flexure, as was the case in the non-flexing board configurations, also reduced

the electromechanical response by up to 81% during impact on the order of 7,000 g.

Such stark reduction in capacitance response predicted by the sub-model and observed

in the laboratory captures the complex interactions between the randomly polarized and

directionally aligned domains of the ferroelectric materials in the presence of an electric

field during the impact. In fact, it was only when the capacitors were charged at the

exact moment of impact, coinciding with the alignment of the polarized domains, that

the ferroelectric ceramic devices exhibited any piezoelectric response. While it may seem

attractive to prevent the board flexure after impact in order to reduce the possibility of

flexural failure and to lower the electromechanical response of the ferroelectric dielectric

MLCC, even with the non-flexing configurations, where the board was fixed directly

to the steel fixture, up to a 6% increase in capacitance was evident during the impact

with peak acceleration on the order of 24,000 g. Thus, even if the board is prevented

from flexing post impact, the greater the shock to which the capacitors are exposed, the

greater the change in capacitance that must be contended with for electronic packages

exposed to harsh mechanical stress environments. Such capacitance changes induced by

the mechanical stresses will have to be addressed by the circuit board designers before the

COTS electronics packages and components can be used in high-g impact applications with

any degree of reliability.
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Based on the validated board dynamics model, newly applied capacitance measure-

ment technique, novel capacitor sub-model and modified capacitance constitutive rela-

tionship, which were a direct outcome of the current research, several conclusions can

be drawn. First, it has been proven that printed circuit board dynamics can now be com-

putationally modeled with good accuracy using relatively simple linear elastic material

models in ALEGRA-EMMA finite element code. Second, the triaxial acceleration pro-

files harvested during such simulations may be employed as mechanical stress boundary

conditions and applied to the component sub-models of capacitors located anywhere on

the board surface during high-g impact greater than 3,000 g. Next, the RC measurement

technique, which can detect device capacitance variations during a high-g impact, was ac-

curate enough even at relatively high data rates and may be employed to obtain capacitance

readings in highly dynamic environments. Also, the newly developed multi-layer ceramic

capacitor computational sub-model in ALEGRA-EMMA, which calculates permittivity

changes based on the piezoelectric response of the ferroelectric dielectric can be applied to

modify the constitutive relationship to accurately predict capacitance variations of the de-

vices exposed to high-g impact. Finally, from the experimental and computational efforts

during this research, it is clear that the electromechanical response of COTS capacitors

with ferroelectric dielectrics, and not just mechanical failure of the component intercon-

nects, must be addressed when exposing such devices to high-g environments, regardless

of the flexing or non-flexing board configurations. The development of the computational

MLCC sub-model and the modified constitutive relationship between the piezoelectrically

induced permittivity changes and capacitance variations, as computationally calculated and

experimentally validated in the laboratory with the dynamic RC method during the current

research, is the first step in developing more reliable and survivable electronics packages

for high-g mechanical stress environments.
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However, the current study is not without its limitations, and a more refined sub-

model that can predict piezoelectric response of ferroelectric ceramics should be developed,

among other recommendations for future work. The first area for improvement is in

determining the exact elastic, piezoelectric and permittivity constants for the precise

material used during the drop tests. Since the unique material specimens and laboratory

equipment were not available to measure the material moduli, published Barium Titanate

ceramic properties were used for this study, despite certain elastic moduli constants varying

by as much as 20% from the manufacturer specified values. Second, especially for

the flexing board cases, a more accurate, orthotropic board model needs to be used, in

order to more precisely calculate the dynamic board response, which has a direct effect

on the boundary conditions and the mechanical stresses applied to the computational

capacitor sub-model. Neither the orthotropic material finite element model, nor the

orthotropic material properties were available for such analysis, necessitating the use of

the less representative linear isotropic model, resulting in numerical capacitance response

predictions an order of magnitude higher than observed in the laboratory. Next, from

the experimental perspective, at least a three to four times higher data rate oscilloscope

would be preferred to measure the voltage across the capacitor. By increasing the data

rate, charge/discharge pulse frequency could be increased, reducing the error of the

least squares fit in half when measuring capacitance, or proportionally increasing the

total time the capacitor under shock can be monitored. Finally, with the availability

of a more robust finite element code, a comprehensive computational model could be

used in order to capture the mechanical failure mechanisms, as well as the piezoelectric

response of the ferroelectric ceramic capacitors, in order to predict potential fracture

initiation and propagation, while at the same time calculating capacitance variations of

such devices. Such computational model would necessitate an extensive grid convergence

study in order to select proper mesh elements for various electronic package components
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to predict both material and electromechanical failures. The grid convergence study would

require capacitance measurements experimentally gathered at very high data in order to

determine not only the magnitude of capacitance variation, but also the exact time when

the interactions between flexural mode of failure and capacitance changes would become

significant enough to impact electromechanical response. Therefore, in order to create

such a comprehensive computational model, the elements would need to be so small, that

the model would be virtually mesh independent and converge asymptoticly to a particular

capacitance value, exponentially increasing the requirement for computational power.

Despite the above mentioned recommendations, in addition to the requirement for

the more accurate layout of the physical MLCC model, which would further increase

the need for greater high performance computing power, the first investigation into the

electromechanical response of capacitors was fairly successful. As a result of this research,

the newly developed capacitor sub-model and constitutive relationship can now be used to

predict the piezoelectric response of ferroelectric ceramics under mechanical stress with

reasonable accuracy. However, for both commercially relevant board dynamics, as well as

for PCBs designed for high-g impact survivability, it is clear that even if the mechanical

failure can be averted through the use of potting and structural supports, during drop shocks

on the order of 3,000 g and higher, electronics packaging designers will have to address the

capacitance variations, if ferroelectric ceramics are employed in the circuit. By accounting

for the piezoelectric response of ferroelectric ceramics under high-g mechanical stress, the

aerospace industry can move toward the more reliable and survivable electronics, which

find exploitation in increasingly harsher operational environments.
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